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INTRODUCTION

General Information

C3D Toolkit is a software development kit responsible for constructing and editing geometric models.
C3D can be used as a software component in Computer-Aided Design systems.

C3D focuses in itself a software implementation of mathematical methods for constructing numerical
models of the geometry of real and imaginary objects, as well as mathematical methods used to operate these
models. Numerical models are used in systems for Computer Aided Design, Computer Aided Engineering
and Computer Aided Manufacturing of the modeled objects. Numerical models of the geometry for real and
imaginary objects are called geometric models.

A geometric model describes the shape of the modeled object and relations between model elements. In
addition, a geometric model contains the history (methods and sequence) of its construction. Model elements
have attributes that provide information about physical, technological and other properties..

Structure and Distinctive Features

C3D consists of five modules shown in Figure: C3D Modeler geometric kernel, C3D Solver parametric
kernel, C3D Converter exchange data module, C3D Vision visualization module and C3D B-Shaper.

C3D Modeler constructs a geometric model, edits the geometric model by changing its internal data,
makes triangulation, calculates inertial properties of the model, builds flat projections of the model and
detects collisions of model elements.

C3D Solver is responsible for defining relations between the elements of the geometric model, this
permits you to edit the model, build similar models and simulate mechanisms by recalculating variation
relations.

C3D Converter permits to share data of the geometric model with other systems.

Using our C3D Visualization Module, software developers customize the graphical user interface of
engineering applications and visualization parameters for three-dimensional geometric models displayed in
it. C3D Vision controls the quality of rendering for 3D models using mathematical apparatus and software,
and the workstation hardware.

C3D B-Shaper lets you work with polygonal models in MCAD, AEC, BIM, and other CAD applications
by converting the models to boundary representation (b-rep) bodies.

So, C3D includes the geometric kernel, the geometric constraints solving component, and exchange data
converter. This is the first distinctive feature of the C3D.

C3D API

All C3D modules provide programming interfaces (API) for using their functionality in an engineering



application, which consist of constants, enumerations, functions, structures, classes.

The features of the C3D API are openness and extensibility. C3D provides direct access to objects, which
allows you to extend the functionality by inheriting from C3D objects.

In addition, an important feature of the C3D API is its stability and backward compatibility. Stability
means that API should not vary much over the longest possible period of time. Backward compatibility
means that code written using the previous version works functionally the same with the next version of the
APL

For cases when there is a need to modify an existing interface, there is a clear procedure for replacing it
with a new interface, aimed primarily at maintaining the users’ ease of use of the APL.

An interface that needs to be changed is declared deprecated using the DEPRECATE DECLARE and
DEPRECATE DECLARE_REPLACE macros defined in the math_x.h file. These macros display a warning
message when compiling code that uses the deprecated function. In addition, on the Windows platform, the
warning issued contains information about the timing of the removal of the deprecated interface, and the
DEPRECATE DECLARE REPLACE macro additionally specifies the interface that replaces the deprecated
function.

Functionality

C3D Modeler provides the following service for the geometric model: description of the shape of the
modeled object; description of relations between geometric model elements; support of model construction
history; and support of attributes of geometric model elements.

C3D Modeler uses Boundary Representation to describe the shape of the modeled object. C3D Modeler
also supports Polygonal Representation. Solid Modeling, Surface Modeling, Direct Modeling methods are
used to build a geometric model.

C3D Modeler constructs polygonal model based on its boundary representation model. A polygonal
model is constructed by triangulating geometric model elements; it is used for visualization and calculations.
In addition, C3D Modeler calculates Inertial Properties of the geometric model, maps flat projections for the
geometric model, and detects collision of model elements.

C3D Modeler supports the construction log with operations, its input data, and sequence used for model
construction. The construction log permits to edit the geometric model and to rebuild it with new parameters.
Geometric model elements are supplied by attributes destined for the additional information about elements.
Objects of geometric model as well as individual elements have attributes.

C3D Solver provide relations between model elements. C3D Solver guarantees geometric constraints for
three- and two-dimensional objects of the geometric model. Geometric constraints are the conditions
imposed on model elements that are expressed as equations. Geometric constraints permit to edit the model,
to create assemblies and similar models, as well as to simulate mechanisms.

C3D Converter uses the following formats to exchange geometric model data with other systems: STEP,
IGES, SAT (ACIS), X T, X B (Parasolid), STL, VRML, and JT. STEP, IGES, SAT, X T, X B formats
transmit the boundary representation of the geometric model. STL and VRML formats transmit the
polygonal representation of the geometric model. JT format transmit the hybrid representation (both) of the
geometric model. STEP format supports transmit of product and manufacturing information (PMI).

C3D Vision allows developers to significantly improve visualization capabilities of engineering software
by increasing the quality of 3D model rendering and speeding the processing of large assemblies. The C3D
visualization toolkit yields new opportunities for managing three-dimensional scenes and animations through
its ready-to-use feature manager. Included is a design tree for 3D models, scene graph and interactive tools
for scene manipulation. All of these functions have become an integral part of modern design products.

C3D B-Shaper converts polygonal models to boundary representation (b-rep) bodies. Polygonal models
are the typical result from 3D scanners and non-CAD 3D modeling software, such as those used to develop
movies and games. B-rep is the primary method of representing 3D models in geometric software such as
CAD.

Theoretical Foundations
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C3D uses a boundary representation that exactly describes the geometric shape of the modeled object. To
describe geometric shapes, C3D uses a set of faces located at the border that separates the internal volume of
the modeled object from the rest of the volume. The faces are curved surfaces jointed at their edges. The
edges of the faces may have complex shapes. The faces are being created and jointed when a model is being
built. Model construction and data management methods of C3D Modeler provide this.

Geometric constraints that describe relations between model elements and other conditions are formulated
as equations. C3D Solver uses a variational approach to find a solution that satisfies the equations.
Variational approach ensures equal rights of all geometric constraints.

Boundary representation uses triangulation to enable construction of polygonal model representation for
visualization and geometric calculations. Polygonal objects consist of triangular and quadrilateral plates that
approximate the faces and broken lines that approximate the edges. Delaunay triangulation in the plane of
parameters of surfaces is used in C3D Modeler.

C3D Modeler can create NURBS (Non-Uniform Rational B-Spline) copies for curves and surfaces.
NURBS objects are used for direct modeling and for data exchange, when there is no direct correspondence
between the objects of C3D and the objects in exchange formats.

C3D uses mathematical objects, methods and algorithms described in the book: Geometric Modeling,

N. Golovanov, http://www.amazon.com/Geometric-Modeling-The-mathematics-shapes/dp/1497473195 .

Package

C3D package contains c3d.lib, ¢3d.dll, libc3d.so and libc3d.dylib library files and a set of Include/*.h
header files. In Windows, library files were compiled in 32bit/64bit, ISO/Unicode and Debug/Release
configurations in VisualStudio 2012, VisualStudio 2013, VisualStudio 2015, VisualStudio 2017 and
VisualStudio 2019 development environments. GCC and CLang compilers were used in 64bit, Unicode, and
Debug/Release configurations in Linux OS. Library files were also compiled in Mac OS (64bit, Unicode and
Debug/Release) using Clang compiler. Clang compiler was used in amd64, Unicode/Multibyte,
Release/Debug configurations in FreeBSD operating system.

Include/*.h header files were used to generate documentation of C3D. Header files contain description of
C3D objects and methods in Russian and English. C3D objects and methods are also described in this
Developer Manual. Changes.txt file contains information on the changes of C3D interface.

The distribution kit contains C3D as well as C# wrapper that permits to use .NET technology when
applications are developed in C#.

Besides C3D, the package also contains test.exe application for Windows that demonstrates the
capabilities of C3D, its source code, CMakeLists.txt file to generate application project and a set of files with
models.

In order to run test.exe, please enter the key and the signature by selecting
Help->License Key, Signature item in the menu.

Test Application

Ready-to-use Windows-based test application for C3D is stored in Example/Demo folder.

Test.vexproj and Test.vexproj.filters files contain C3D test application solution and project respectively
for Microsoft VisualStudio 2015.

To create a project and compile the test application of C3D, it is required to perform the following steps:

1. Create a test folder (for example, TestApp) in any location of your choice.

Choose an archive in the «C3D» catalog corresponding to your development environment.
Copy <Debug>, <Include>, <Release> folders from the chosen archive to the test folder.
Copy <Source> folder from the «Example» archive to the test folder.
Make sure that the test folder (TestApp) contains <Debug>, <Include>, <Release> and <Source>
subfolders.
Install CMake and use «Add CMake to the system PATH for all users» option during installation.
Create a project for test application using the following procedure.

Nk w

S
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8.
9.

10.

Run CMake to generate a project using CMakeLists.txt file.

Specify <path_to_testapp>\TestApp\Source folder in «Where is the source code» field.

Specify <path_to_testapp>\TestApp\Build folder in «Where to build the binaries» field.

Click Configure to make settings for the project.

Confirm creation of <path to_testapp>\TestApp\Build folder in «Create Directory» dialog box.
Specify development environment configuration appropriate to C3D version in «Specify the
generator for this project» dialog box.

Click Generate to build project files.

Run newly created TestApp\Build\Test.sIn test application project in the development environment.
In order to activate C3D, before compilation specify the actual key and the signature in
test_manager.cpp file to modify EnableMathModules(...) method call in Manager object constructor.
After compiling, run newly generated test application test.exe from TestApp\Debug or TestApp\
Release folder, respectively.

The above procedure is described in readme.txt file.

Development in .NET Environment

C3D can work in .NET environment. You should use the wrapper included in C3D package to develop
applications in .NET environment.

C3D C# wrapper is NetC3D.dll file that was built using .NET Framework4.5.2 platform in 32bit/64bit,
Debug/Release configurations and in VisualStudio 2012, VisualStudio 2013, VisualStudio 2015 development
environments. The library was compiled with Strong Name signature support.

Please execute the following procedure to use C3D in newly developed C# applications:

1.

In C3D package, select NetC3D.dll file with the required configuration: 32bit/64bit or
Debug/Release in VisualStudio 2012/VisualStudio 2013/VisualStudio 2015 development
environment.
Copy c¢3d.dll file and place it text to NetC3D.dIl file. The dll should be from the same package for
the same configuration and development environment: 32bit/64bit, Debug/Release or VisualStudio
2012/VisualStudio 2013/VisualStudio 2015 to the folder containing NetC3D.dIL.
Include NetC3D.dll file into the current project: References->Add Reference->Browse..., then select
NetC3D.dll file.
Enter the license key and the signature before calling functions from NetC3D.dll. This can be done
as follows:
System.String key = Environment.GetEnvironmentVariable("C3Dkey");
System.String signature = Environment.GetEnvironmentVariable("C3Dsignature");
NetC3D.ToolEnabler.EnableMathModules(key, signature);
where C3Dkey and C3Dsignature are the environment variables containing the key and the
signature.
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M.1. METHODS USED TO BODIES CONSTRUCTING

The main elements of the geometric model serve the bodies. C3D geometric kernel constructs bodies that
fully or partially describe the surface of the modeled object. The body can be closed and non-closed. Closed
body doesn't contain boundary edges. It describes the whole surface of the modeled object and the set of its
internal points. Non-closed body contains boundary edges. It describes only a part of surface of the modeled
object. Many bodies have a simple form and are built on the basis of points, curves and surfaces.

M.1.1. Constructing an Elementary Body

The method
MbResultType
ElementarySolid ( SArray<MbCartPoint3D> & points,
ElementaryShellType solidType,
const MbSNameMaker & names,
MbSolid*& result )
constructs an elementary body (a sphere, a torus, a cylinder, a cone, a straight parallelepiped, a pyramid or a
rounded plate) based on specified points.
Method input parameters are:
* points is a set of control points,
*  solidType is the type of the created body,
* names is faces namer.
Method output parameter is result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
This method is declared in action_body.h file.
points parameter contains the control points used to construct a body. solidType parameter defines the
type of the created body. names parameter is responsible for naming faces of the constructed body.
The number of required control points depends on the type of created body. Table M.1.1.1 contains data
on the number of control points in points set required to construct a body that belongs to solidType type.

Table M.1.1.1.

solidType Body type Number of control points

et Sphere sphere 3 points

et _Torus torus 3 points

et Cylinder cylinder 3 points

et Cone cone 3 points

et Block block 4 points

et Wedge wedge 4 points

et Plate plate 4 points

et Prism prism the number of base nodes + 1 point
et Pyramid pyramid the number of base nodes + 1 point

When a sphere is constructed, points[0] from the set defines the center of the sphere, points[1] defines
the direction of axisZ in the local coordinate system of the sphere, points[2] along with the points mentioned
above define the plane of axisX and axisZ in the local coordinate system of the sphere. The distance between
points[0] and points[2] is defined by the radius of the sphere, see Fig M.1.1.1.
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FigM.1.1.1.

When a torus is constructed, a point from points[0] set defines the center of the torus, points[1] point
defines the direction of axisX in torus local coordinate system, points[2] point along with the previous
points defines the plane of axisX and axisZ in torus local coordinate system. The distance between points[0]
and points[1] points defines the larger torus radius; the distance between points[1] and points[2] points
defines the smaller torus radius, see Fig M.1.1.2.

\ z?gfnm'}?&jdfiﬂ.s
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Fig M.1.1.2.

When a cylinder is constructed, a point from points[0] set defines the center of cylinder lower base,
points[1] point defines the center of the upper cylinder base and the direction of axisZ in cylinder local
coordinate system, points[2] point along with the previous points defines the plane of axisX and axisZ in
cylinder local coordinate system. The distance between points[0] and points[1] points defines cylinder
height, the distance from axisZ to points[2] point defines cylinder radius, see Fig M.1.1.3.

axisX

Fig M.1.1.3.

When a cone is constructed, a point from points[0] set defines cone vertex, points[1] point defines the
center of the cone base and axisZ direction in cone local coordinate system, points[2] point along with the
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previous points defines the plane of axisX and axisZ in cone local coordinate system. The distance between
points[0] and points[1] points defines cone height; the cone angle is defined taking into account the fact that
points[2] point lies on cone lateral surface, see Fig M.1.1.4.

points[2]

# pomti[0]

FigM.1.1.4.

axisX

When a rectangular block is constructed, points[0] and points[1] points define an edge and two vertices
of the block, peints[2] point along with the previous points define the plane of lower block base, block edge
that is parallel to points[0] edge and points[1] edge goes through points[2] point, and points[3] point
defines the plane of the upper base of the block, see Fig M.1.1.5.

—— f_poiﬁts[_’t]

o _'-"poinls[ﬂ] )

points[1] " points[2]

Fig M.1.1.5.

When a rectangular wedge is constructed, points[0] and points[1] points define an edge and two vertices
of the wedge, points[2] point along with the previous points defines the plane of wedge lower base and its
vertex, wedge edge that is parallel to points[0] and points[1] edge goes through point points[2], and
points[3] point defines the plane of the upper wedge base, see Fig M.1.1.6.

points[3]

:ﬁ;)ints[[ir'ljh '

points[1]
points[2]

Fig M.1.1.6.

When a rectangular plate with cylindrical ends is constructed, points[0] and points[1] points define an
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edge and two vertices of the plate, points[2] point along with the previous points defines the plane of plate
lower base, plate edge is parallel to points[0] and points[1] edge goes through points[2] point, and points[3]
point defines the upper plate base plane, see Fig. M.1.1.7.
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] points2]
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points[0]
Fig. M.1.1.7.

When a right-angle prism with a polygon at the base is constructed, weightCentre, points[0] and
points[1] points define the plane of prism lower base, where weightCentre is the center of gravity point of
the base. points[0], points[1], ..., points[n—1] projection of points define the polygonal base, and prism
height is defined by the distance from the plane of the lower base to peints[#] last point. In Fig. M.1.1.8, you
can see a right-angle prism with a pentagonal base.
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points[1]

Fig. M.1.1.8.

When a pyramid with a polygon at the base is constructed, weightCentre, points[0] and points[1] points
define the plane of pyramid lower base, where weightCentre is the center of gravity point of the base.
points[0], points[1], ..., points[n—1] points define the polygonal base, and points[x] last point defines the
top of the pyramid. In Fig. M.1.1.9, you can see a pyramid with a pentagonal base.

point[5]

points[2]

points[0] points[1]

Fig. M.1.1.9.
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Points from points set that define the base of the pyramid or prism may be located at the vertices of a
regular polygon. There may be any polygon at the base of a prism or a pyramid.

ElementarySolid method adds the MbElementarySolid constructor to the log of the newly constructed
body. This constructor contains all data required to construct the body. MbElementarySolid constructor is
declared in cr_elementary_solid.h file.

test.exe test application constructs elementary bodies using the points specified by «Create->Body-
>Elementary->» and «Create->Body->By Points->» menu commands.

M.1.2. Constructing an Elementary Body by a Given Surface

The method
MbResultType
ElementarySolid ( const MbSurface & surface,
const MbSNameMaker & names,
MbSolid *& result )
constructs an elementary body by a given surface.
Method input parameters are:
» surface is an elementary surface,
* names is faces namer.
Method output parameter is result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
This method is declared in action_solid.h file.
surface parameter contains the original surface. names parameter is responsible for naming faces of the
constructed body.
An elementary surface may be represented by MbSphere sphere, MbTorus toroidal surface, MbCylinder
cylindrical surface or MbCone conical surface. In Fig. M.1.2.1, you can see a spherical surface and a body
that was constructed by it.

surface result

Fig. M.1.2.1.

In Fig. M.1.2.2, you can see a toroidal surface and a body that was constructed for it.
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surface

result

Fig. M.1.2.2.

In Fig. M.1.2.3, you can see a cylindrical surface and a body that was constructed for it.

surface result

Fig. M.1.2.3.

In Fig. M.1.2.4, you can see a conical surface and a body that was constructed for it.



surface result

Fig. M.1.2.4.

If these are cyclically closed surfaces, then the bodies to be constructed for them would have a
corresponding form. If the elementary surface does not belong to any of these types, then the method returns
rt Error error code.

ElementarySolid method adds MbRevolutionSolid constructor to the log of the newly constructed body.
This constructor contains all data required to construct the body. MbRevolutionSolid constructor is declared
in cr_revolution_solid.h file.

test.exe constructs an elementary body for a given surface using «Create->Body->By surface->By
elementary surface» menu command.

M.1.3. Constructing an Extrusion Body

The method
MbResultType
ExtrusionSolid (const MbSweptData & sweptData,
const MbVector3D & direction,
const MbSolid * solid1,
const MbSolid * solid2,
bool checklntersection,
ExtrusionValues & params,
const MbSNameMaker & names,
PArray<MbSNameMaker> & cnames,
MbSolid *& result )
constructs an extrusion body.
Method input parameters are:
* sweptData are data on curve generators,
¢ direction is the extrusion direction,
* solid1 is used when option «To next object» in the forward direction is selected,
* solid2 is used when option «To next object» in the backward direction is selected,
* checklntersection is a flag indicating that it is necessary to merge solidl and solid2 bodies subject to
checking the intersection,
*  params are construction parameters,
* names is face namer,
* cnames are namers of curve generator segments.
Method output parameter is result constructed body. If successful, the method returns rt Success,
otherwise it returns an error code from MbResultType listing.
This method is declared in action_solid.h file.
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Extrusion body belongs to the type of motion bodies, which are constructed by moving a generating curve
along a guiding curve. A line segment is a guiding curve for an extruded body. An extruded body is
constructed by moving one or more curves along the segment, the direction of which is determined by
direction vector.

sweptData parameter contains information on generator curves. MbSweptData class and ExtrusionValues
structure are described in swept parameter.h file. Generating curves may be two-dimensional contours on
surface or contours in contours3D space. In particular cases, two-dimensional contours may be located on a
plane. contours may have arbitrary orientation. contours may be nested with each other. contours shouldn't
intersect with each other.

A body can be constructed in the forward direction in respect to direction vector, in the backward
direction in respect to direction vector, as well as in both directions. Construction parameters for each
direction are set by MbSweptSide objects.

params parameter contains information on MbSweptSide sidel extrusion method in forward direction as
well as information on MbSweptSide side2 extrusion method in the backward direction. Extrusion in each
direction can be executed using three methods. If way==sw_scalarValue then extrusion is executed to
scalarValue length in the direction of sidel or side2, respectively. If way==sw_shell then extrusion is
executed to the nearest solid1 or solid2 object, respectively. If way==sw_surface then extrusion is executed
to sidel.surface or side2.surface, respectively, if sidel.distance=0 or side2.distance=0. If way==sw_surface
and distance!=0 then extrusion is executed to the equidistant surface to sidel.surface or to the equidistant
surface to side2surface, respectively. If sidel.rake!=0 or side2.rake!=0, then graded extrusion is executed
with sidel.rake or side2.rake grade in the respective direction. params.thickness1 parameter defines outward
offset from the generator curve, and params.thickness2 parameter defines inward offset from the generator
curve. params.shellClosed parameter controls whether the constructed body is closed. params.checkSelfInt
parameter defines the need to check the result of construction for self-intersection. By default
params.checkSelflnt=false and the check is not performed.

In Fig. M.1.3.1, you can see the data used for construction, as well as the scheme to inherit the parameters
of constructed extrusion body (ExtrusionValues & params).

t MbSweptData j | SweptValues I

SPtr<MbSurface> surface double zhickness1

std::vector< SPtr<MbContour> > contours double thickness2

std::vector<SPtr<MbContour3D> > contours3D bool shellClosed
- SPtr<MbSolid= solid | bool checkSelfInt

E\-'le \\'upLSids,] 4
Ewcp tV alucsAndSidcg

MbSweptWay way {sw_scalarValue, ; ,
sw_shell, MbSweptSide sidel ‘
sw_surface} MbSweptSide side2

double scalarValue |

double rake +

MbSurface* surface

double distance [ ExtrusionValues J

MbeSenseValue sameSense

Fig. M.1.3.1.
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names and cnames parameters are responsible for naming the faces of the newly constructed body.
In Fig. M.1.3.2, you can see a two-dimensional contour and surface (MbPlane) flat surface.

normal

surface

Fig. M.1.3.2.

In Fig. M.1.3.3, you can see a closed body that was constructed by using specified parameters to extrude
the contour shown in Fig. M.1.3.2. Each contour segment has a corresponding face of the body, its name was

taken from the corresponding element of cnames[0] name generator.

params.shellClosed = true params.sidel.race

params.thicknessl = 0 > a

-ams.thickness2 =0
params.inickness params.sidel.way =

solid]1 =0 = sw_scalarValue

params.sidel surface =0

direction
- params.sidel.scalarValue

sweptData.surface

sweptData.contours[0] params.side2.scalarValue

params.side? way =

params.side2.surface =0 = sw_scalarValue

solid2 = 0 i
params.side.race
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Fig. M.1.3.3.

In Fig. M.1.3.4, you can see a thin-walled closed body that was constructed by extrusion based on
specified contour parameters shown in Fig. M.1.3.2.

params.shellClosed = true params.thickness|

solidl =0 params.thickness2

params.sidel.scalarValue = ()

params.sidel surface =0

direction

sweptData.surface

sweptData.contours[0] params.side2.scalarValue

params.side? surface =0
s~

solid2 =0 params.sidel.race

Fig. M.1.3.4.

In Fig. M.1.3.5, you can see a non-closed body that was constructed by using extrusion with specified
contour parameters shown in Fig. M.1.3.2. Parameters used to construct the body shown in Fig. M.1.3.3
differ from parameters used to construct the body shown in Fig. M.1.3.5 only by params.shellClosed value.
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params.sidel.race

params.shellClosed = false
et

params.thicknessl =0

params.thickness2 =0
params.sidel.way =

solidl =0 = sw_scalarValue

params.sidel surface =0

direction
o params.sidel.scalarValue

sweptData.surface

sweptData.contours[0] params.sidel.scalarValue

params.side2 way =

params.side2 surface = 0 =sw_scalarValue

—

solid2 =0 params.side2.race

Fig. M.1.3.5.

In Fig. M.1.3.6, you can see two-dimensional contour, flat surface (MbPlane) as well as two bodies
(solid1 and solid2) that will be used to construct an extruded body. For construction solid1 and solid2 bodies
should completely cover contour motion path in the appropriate direction. In this case, the following
parameters should be taken into account: params.sidel.rake, params.side2.rake, params.thicknessl,

params.thickness?2.

normal
A -

surface

solid2
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Fig. M.1.3.6.

Such construction is executed by extruding the contour to a length exceeding the maximum distance to
the specified body and then subtracting the specified body from the newly constructed body.

In Fig. M.1.3.7, you can see a body that was constructed by extruding the contour shown in Fig. M.1.3.6
with «To the nearest objects» option selected for solid1 and solid2 bodies.

params.sidel.race = ()

params.sidel.way = sw_sold sweptData.surface
solid1 \l\
direction

sweptData.contours[0]

params.thicknessl =0 solid2
params.thickness2 =0
params.side2. way = sw_solid
params.side2.race = ()

Fig. M.1.3.7.

In Fig. M.1.3.8, you can see a thin-walled body with sloping faces constructed by extruding the contour
shown in Fig. M.1.3.6 with «To the nearest objects» option selected for solid1 and solid2 bodies.
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params.sidel.way = sw_solid

params.sidel.race > () params.sidel.race = - params.side.race

-\-‘_\LH_'_‘—\-\_

params.thickness] +
+ params.thickness2

solid1

direction

sweptData.surface

solid2

params.side2. way = sw_solid
params.side2.race < 0

Fig. M.1.3.8.

In Fig. M.1.3.9, you can see a two-dimensional contour, surface (MbPlane) flat surface and two
surfaces, surfacel and surface2 (that will be used to construct the extruded body). For the construction
surfacel and surface2 should completely cover the path of the contour moved in the appropriate direction.
In this case, the following parameters should be taken into account: params.sidel.rake, params.side2.rake,
params.thickness1, params.thickness2. The extruded body is cut off by the specified surfaces or by the
surfaces equidistant to them if params.sidel.distance or params.side2.distance are not equal to zero.
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Fig. M.1.3.9.

In Fig. M.1.3.10, you can see a body that was constructed by extruding the contour shown in Fig. M.1.3.9
with «To the surface» options. surfacel and surface2 were specified as such surfaces.

29



params.sidel.race =0 sweptData.surface

params.sidel.way = sw_surface

params.sidel. distance <0

direction

params.sidel surface

sweptData.contours[0] |

params.side2 surface

params.side2.distance =0

params.thicknessl =0 params.side2.way = sw_surface
params.thickiness2 = 0 params.side2.race = ()
Fig. M.1.3.10.

In Fig. M.1.3.11, you can see a thin-walled body with sloping faces that was constructed by extruding the
contour shown in Fig. M.1.3.9 with «To the surface» options. surfacel and surface2 were specified as such
surfaces.
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params.sidel.way = sw_surface
params.sidel.distance =0
params.sidel.race < (

] | params.thickness2 params.thicinessl =0

\

params.sidel surface

direction
- - e
—
sweptData.surface

params.side2 surface -~ sweptData.contours[0]

params.side?. way = sw_surface
params.side2. distance = 0

params.side2.race = 0

Fig. M.1.3.11.

A two-dimensional contour may be drawn on a flat surface or on a curved surface. For example, a body
can be constructed by extruding a contour at a curved surface created from a cycle of one of the faces of the
solid body shown in Fig. M.1.3.12.
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contour

Fig. M.1.3.12.

In Fig. M.1.3.13, you can see a body that was constructed by extruding the contour on a curved surface
shown in Fig. M.1.3.12.

/ params.shellClosed = true

sweptData.contours[0]

direction

params.thicinessl =0 |

params.thickness2 =0 params.sidel.scalarValue

params.side2.scalarValue
Fig. M.1.3.13.

In Fig. M.1.3.14, you can see a thin-walled body that was constructed by extruding the contour on a
curved surface shown in Fig. M.1.3.12.
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params.shellClosed = true

/ sweptData.contours[0]

direction

params.thickness]

params.thickness2 = 0 params.sidel.scalarValue

params.side?.scalarValue

Fig. M.1.3.14.

In Fig. M.1.3.15, you can see a non-closed body that was constructed by extruding the contour on a
curved surface shown in Fig. M.1.3.12.
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/’ ~ params.shellClosed = false

sweptData.contours[0]

direction

_ params.sidel.scalarValue
params.side2.scalarValue

Fig. M.1.3.15.

If one surface contains a set of non-intersecting two-dimensional contours, then the considered method
defines external and nested internal contours (multilevel nesting can be used). In Fig. M.1.3.16, you can see a
set of non-intersecting two-dimensional contours and surface (MbPlane) flat surface.

© contours
normal
surface -
Fig. M.1.3.16.

In Fig. M.1.3.17, you can see a multi-part closed body that was constructed by extruding the set of
contours shown in Fig. M.1.3.16.

34



params.sidel.scalarValue

params.sidel.race =0

params.thicknessl =0
params.thickness2 =0

Fig. M.1.3.17.

In Fig. M.1.3.18, you can see a multi-part closed body that was constructed by extruding (with a slope) a
set of contours shown in Fig. M.1.3.16.

params.sidel.race

params.sidel.scalarValue

params.thickness] =0

params.thickness2 = 0

Fig. M.1.3.18.

In Fig. M.1.3.19 you can see a multi-part thin-walled closed body that was constructed by extruding the
set of contours shown in Fig. M.1.3.16.
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e params.thickness| + params.thickness2

params.sidel.scalarValue
params.sidel.race =0

Fig. M.1.3.19.

In Fig. M.1.3.20, you can see two three-dimensional contours.

direction

contours3D[0]
contours3D[1]

Fig. M.1.3.20.

In Fig. M.1.3.21, you can see a double-connected thin-walled closed body that was constructed by
extruding three-dimensional contours shown in Fig. M.1.3.20.
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params.shellClosed = true

direction

sweptData.contours3D[0]
sweptData.contours3D[1]

params.thickness| + params.thickness2

Fig. M.1.3.21.

In Fig. M.1.3.22, you can see two non-closed bodies that were constructed by extruding three-
dimensional contours shown in Fig. M.1.3.20. The bodies were constructed separately for each contour.
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params.shellClosed = false

direction

sweptData.contours3D[0]
sweptData.contours3D|[1]

Fig. M.1.3.22.

ExtrusionSolid extrusion body construction method adds MbExtrusionSolid constructor in the log of the
newly constructed body which contains all the necessary data to construct the body. MbExtrusionSolid
constructor is declared in cr_extrusion_solid.h file.

test.exe test application constructs an extruded body using «Create->Body->By curves->By extruding a
surface curve» and «Create->Body->By curves->By extruding a 3D curve» menu commands.

M.1.4. Constructing a Revolution Body

The method
MbResultType
RevolutionSolid ( const MbSweptData & sweptData,
const MbAxis3D & axis,
RevolutionValues & params,
const MbSNameMaker & names,
PArray<MbSNameMaker> & cnames,
MbSolid *& result )
constructs a revolution body.
Method input parameters are:
* sweptData are data on curve generators,
e axis is rotation axis,
* params are construction parameters,
* names is face namer,
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* cnames are namers of curve generator segments.

Method output parameter is result constructed body.

If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration. This method is declared in action_solid.h file.

Rotation body belongs to the type of motion bodies which are constructed by moving a curve generator
along a guiding curve. A circle or an arc can be a guidng curve for rotation body. Rotation body is
constructed by rotating one or more curves around axis.

sweptData parameter contains information on generator curves. MbSweptData class and
RevolutionValues structure are described in swept parameter.h file. Generating curves may be two-
dimensional contours on surface or contours in contours3D space. In particular cases, two-dimensional
contours may be located on a plane. contours may have arbitrary orientation. contours may be nested with
each other. contours shouldn't intersect with each other.

Curves can be rotated in forward direction about axis, in backward direction about axis, and in both
directions. The rotation in forward direction is counterclockwise when looking toward the axis. Construction
parameters for each direction are set by MbSweptSide objects.

params parameter contains information on rotation method in forward direction MbSweptSide sidel and
information on rotation method in backward direction MbSweptSide side2. Rotation in each direction can be
executed in two ways. If way==sw scalarValue, then rotation is executed about scalarValue angle in
direction sidel or side2, respectively. If way==sw_surface, then rotation is executed about sidel.surface or
side2.surface angle, respectively, if sidel.distance=0 or side2.distance=0. If way==sw_surface and distance!
=0, then rotation is executed about to equidistant surface to sidel.surface or to equidistant surface to
side2.surface, respectively. params.thickness1 and params.thickness2 parameters define the wall thickness
of thin-walled body. params.thickness1 parameter defines outward offset from the generator curve, and
params.thickness?2 parameter defines inward offset from the generator curve. params.shellClosed parameter
controls whether the constructed body is closed. params.checkSelfInt parameter defines the need to check the
result of construction for self-intersection. By default, params.checkSelfInt=false and the check is not
performed. params.shape parameter controls the shape of the constructed body. If params.shape=1, then the
constructed body has torus topology. If params.shape=0, then the body has sphere topology.

In Fig. M.1.4.1, you can see the data used for construction, as well as parameters inheritance scheme for
constructed revolvution body (RevolutionValues & params).

[ MbSweptData ] ._ [Sweptvalues ]

double thickness] )

| SPtr<MbSurface> surface

std::vector< SPtr<MbContour> > contours double thickness2
std::vector<SPtr<MbContour3D> > contours3D bool shellClosed
‘ SPtr<MbSolid= solid | bool checkSeMnI

MbSweptSide
E J - Ex\'eplv aluesAndSidv:a

| MbSweptWay way {sw_scalarValue, ’ :
sw_shell, MbSweptSide sidel
sw_surface} MbSweptSide side2

double scalarValue . .
double rake ‘
MbSurface* surface |
double distance [l{c\-'olLH;iUu\-“'ahu:s J

| MbeSenseValue sameSense int shape l

Fig. M.1.4.1.
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names and cnames parameters are responsible for naming the faces of the newly constructed body.
In Fig. M.1.4.2, you can see a two-dimensional contour, a flat surface (MbPlane) and a rotation axis.

/f"'\

normal

axiN surface

Fig. M.1.4.2.

In Fig. M.1.4.3, you can see a closed body that was constructed by rotation using specified parameters of
the contour shown in Fig. M.1.4.2. Each contour segment has a corresponding face of the body, its name was
taken from the corresponding element of cnames[0] name generator.

params.sidel.way =
= sw_scalarValue

params.shellClosed = true

params.thicknessl =0

params.thickness2 = ( params.sidel.scalarValue

sweptData.surface
sweptData.contours[0]

params.sidel.scalarValue

params.side2.way =
=sw_scalarValue

Fig. M.1.4.3.

In Fig. M.1.4.4, you can see a closed thin-walled body that was constructed by using rotation for specified
parameters of the contour shown in Fig. M.1.4.2.
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params.sidel . way =

params.shellClosed = true
=sw_scalarValue

params.sidel.scalarValue

sweptData.surface

sweptData.contours[0]

params.thickness1 =0

params.thiciness2

params.sidel.scalarValue

params.side2. way =
= sw_scalarValue

Fig. M.1.4.4.

In Fig. M.1.4.5, you can see a non-closed body that was constructed by rotation using the specified
parameters of the contour shown in Fig. M.1.4.2. Parameters used to construct the body shown in Fig.
M.1.4.3, are not the same as the parameters for constructing the body shown in Fig. M.1.4.5, but the only
diffrence is params.shellClosed value.
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params.shellClosed = false params.sidel.way =

= sw_scalarValue

params.sidel.scalarValue

sweptData.surface

sweptData.contours|[0]

params.side2.scalarValue

params.side2. way =
= sw_scalarValue

Fig. M.1.4.5.

In Fig. M.1.4.6, you can see a two-dimensional contour, a flat surface (MbPlane) and two surfaces
(surfacel u surface2) that will be used to construct a revolution body. For the construction surfacel and
surface2 should completely cover the path of the contour moved in the appropriate direction. The following
parameters should be taken into account: params.thickness1, params.thickness2. A revolution body is cut off
by specified or equidistant surfaces if params.sidel.distance or params.side2.distance are not equal to zero.
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surfacel

normal

surface

surface2

Fig. M.1.4.6.

In Fig. M.1.4.7, you can see a body that was constructed by rotating the contour shown in Fig. M.1.4.6
with selected options «To the surface» (surfacel and surface2).

43



params.shellClosed = true params.sidel. distance > (0

:""'\’\V/ params.sidel.way = sw _surface

\ params.sidel surface

params.thicknessl =0
params.thickness2 =0

sweptData.surface

sweptData.contours[0]

axh

params.sidel. distance =)

par‘ams.sidel way = S“."_Sul'facb‘ pa}'qms'sfdez surface

Fig. M.1.4.7.

In Fig. M.1.4.8, you can see a thin walled-body that was constructed by rotating the contour shown in Fig.
M.1.4.6 with selected options «To the surface» (surfacel and surface?2).
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params.shellClosed = true params.sidel. distance = ()

params.sidel.way = sw_surface

params.sidel surface

sweptData.surface

sweptData.contours[(]

params.thickness] =10
params.thickness2

params.side2. distance = ()

params.side2.way = sw_surface params.side2.surface

Fig. M.1.4.8.

A two-dimensional contour may be drawn on a flat surface or on a curved surface. For example, you can
construct a body by rotating a contour on a curved surface that was created using a cycle for one of the faces
of the revolution body shown in Fig. M.1.4.9.

contour

N

axis

Fig. M.1.4.9

In Fig. M.1.4.10, you can see a body that was constructed by rotating the contour on the curved surface
shown in Fig. M.1.4.9.
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params.shellClosed = true

sweptData.contours[0]

sweptData.surface

params.thickness1 =0
params.thickness2 =0

N

params.sidel.scalarValue =0

| params.side2.scalarValue

Fig. M.1.4.10.

In Fig. M.1.4.11, you can see a thin-walled body that was constructed by rotating the contour on the
curved surface shown in Fig. M.1.4.9.
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parans.shellClosed = true params.sidel scalarValue

sweptData.contours[(]

sweptData.surface

params.thickness2 =0

params.thickness|

/

" params.sidel.scalarValue

Fig. M.1.4.11.

In Fig. M.1.4.12, you can see a non-closed body that was constructed by rotating the contour on the
curved surface shown in Fig. M.1.4.9.
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params.shellClosed = false params.sidel.scalarValue

sweptData.contours[0]

sweptData.surface

params.thickness] =0
params.thickness2 =0

axis\

| params.side?. scalarValue

Fig. M.1.4.12.

If one surface contains a set of non-intersecting two-dimensional contours, then the considered method
defines external and nested internal contours (multilevel nesting can be used). In Fig. M.1.4.13, you can see a
set of non-intersecting two-dimensional contours and a flat surface (MbPlane).

surface

Fig. M.1.4.13.

In Fig. M.1.4.14, you can see a multi-part closed body that was constructed by rotating the set of contours
shown in Fig. M.1.4.13.
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params.shellClosed = true

axis

AN

params.thickness] =0
params.thickness2 = 0

params.side2.scalarValue

params.sidel.scalarValue =0

Fig. M.1.4.14.

In Fig. M.1.4.15, you can see a multi-part thin-walled closed body that was constructed by rotating the set
of contours shown in Fig. M.1.4.13.
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params.shellClosed = true

axis

AN

\ params.sidel.scalarValue

params.sidel.scalarValie =10

params.thickness1 + params.thickness2

Fig. M.1.4.15.

In Fig. M.1.4.16, you can see two three-dimensional contours.

contours3D|[0]

contours3D[1]

axis

Fig. M.1.4.16.

In Fig. M.1.4.17, you can see a doubly-connected thin-walled closed body that was constructed by
rotating the three-dimensional contours shown in Fig. M.1.4.16.
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sweptData.contours3D[1]

sweptData.contours3D[0]

params.side2.scalarValue |

params.sidel.scalarValue =0

\

params.thickness| + params.thickness2 ,)YY/

Fig. M.1.4.17.

In Fig. M.1.4.18, you can see two non-closed bodies that were constructed by rotating three-dimensional
contours shown in Fig. M.1.4.16.
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params.sidel.scalarValue

sweptData.contours3D[1]

sweptData.contours3D[0]

—

params.side2.scalarValue |

params.thicknessl =0
params.thickness2 =0

Fig. M.1.4.18.

RevolutionSolid method that is used to construct a revolution body adds MbRevolutionSolid constructor
to the log of the newly constructed body. This constructor contains all data required to construct the body.

MbRevolutionSolid constructor is declared in cr_revolution_solid.h file.

test.exe test application constructs a revolution body using «Create->Body->By curves->By rotating a

surface curve» and «Create->Body->By curves->By rotating a 3D curve» menu commands.

M.1.5. Constructing a Swept Body

The method

MbResultType

EvolutionSolid ( const MbSweptData & sweptData,
const MbCurve3D & spine,
EvolutionValues &  params,
const MbSNameMaker & names,
const MbSNameMaker & cnames,
const MbSNameMaker & snames,
MbSolid *& result )
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constructs a swept body by moving a curve generator along a guiding curve.
Method input parameters are:

* place is generating contour local coordinate system,
* contour is generating contour,
* spine is guiding curve,
*  params are construction parameters,
* names is face namer,
* cnames is generator namer,
* snames is guiding line namer.
Method output parameter is result constructed body.

If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration. This method is declared in action_solid.h file.

A swept body is a general case of movement bodies, which are constructed by moving a generator curve
along the guiding curve. Arbitrary curve can be used as a guiding curve for a swept body.

sweptData parameter contains information on generator curves. MbSweptData class and EvolutionValues
structure are described in swept parameter.h file. Generating curves may be two-dimensional contours on
surface or contours in contours3D space. In particular cases, two-dimensional contours may be located on a
plane. contours may have arbitrary orientation. contours may be nested with each other. contours shouldn't
intersect with each other.

Generator curves are moved along spine guiding curve. params parameter contains information about
movement mode, presence of body walls and their thickness and data whether the constructed body is closed.
params.thickness1 and params.thickness2 parameters define wall thickness of the constructed thin-walled
body. params.thickness1 parameter defines outward offset from the generator curve, and params.thickness2
parameter defines inward offset from the generator curve. params.shellClosed parameter controls whether
the constructed body is closed. params.checkSelfInt parameter defines the need to check the result of
construction for self-intersection. By default, params.checkSelfInt=false, the check is not performed and the
method permits you to construct self-intersecting bodies. The movement can be performed in three ways.
Movement mode is defined by params.mode parameter. If params.mode=0, then the movement of generator
curves is coplanar. If params.mode=1, then moving generator curves maintain their position in the local
coordinate system, which is tangent to the generator curve. If params.mode=2, then before movement,
generator curves are transferred to a plane perpendicular to the starting end of the guiding curve, and
subsequently they maintain their position in the local coordinate system, which is tangent to the generation
curve.

In Fig. M.1.5.1, you can see the data used for construction, as well as parameters inheritance scheme for
constructed swept body ExtrusionValues & params.

t MbSweptData j | SweptValues I

double thicknessl

SPtr<MbSurface> surface

std::vector< SPtr<MbContour> >  contours double thickness2
std::vector<SPtr<MbContour3D> > contours3D bool shellClosed
SPtr<MbSolid> solid bool checkSelfInt

A
E EvolutionValues j

mt mode
double range
SPtr<MbFunctiom> scaling
SPtr<MbFunctiom> winding
SPtr<const MSurface> surface
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Fig. M.1.5.1.

The generating contour can change its shape in the process of moving along the trajectory, as well as change
the scale according to a given law and rotate according to a given law. The params.range parameter
determines the offset of the points of the generating contour at the end of the trajectory. The offset of the
generating curve is performed according to the linear law. The params.scaling function defines the scaling
law of the generating contour. The params.winding function defines the rotation law of the generating
contour. The params.surface used to control the spine guide curve.

The names, cnames u snames parameters are responsible for naming the faces of the newly constructed
body.

In Fig. M.1.5.2, you can see a two-dimensional contour, flat surface (MbPlane) and spine guiding curve.

spine
N surface
\\
4‘mal
Fig. M.1.5.2.

In Fig. M.1.5.3, you can see a swept body that was constructed by moving the contour along the guiding
curve shown in Fig. M.1.5.2. The method of moving is determined by params.mode=0 parameter, in this
case the planes of body ends remain parallel.

54



params.shellClosed = true params.thickness1 =0

params.parallel = 0 params.thickness2 =0

sweptData.contours[0]
sweptData.surface

Fig. M.1.5.3.

In Fig. M.1.5.4, you can see a swept body that was constructed by moving a contour along the guiding
curve shown in Fig. M.1.5.2, using the method defined by params.mode=1 parameter. In this case, the plane
of the body end edge keeps its position relative to the end of the guiding curve according to the position of

the start edge of the plane relative to the end of the guiding curve.

params.shellClosed = true params.thickness1 = 0

params.parallel = 1 params.thickness2 = 0

sweptData.contours[0]

sweptData.surface

Fig. M.1.5.4.

In Fig. M.1.5.5, you can see a swept body that was constructed by moving the contour along the guiding
curve shown in Fig. M.1.5.2. The method of moving is determined by params.mode=2 parameter, in this

55



case the planes of body ends remain perpendicular to the guiding curve at its beginning and end.

params.shellClosed = true params.thickness1 =0
params.thickness2 = 0

params.parallel = 2

sweptData.contours[0]
sweptData.surface

Fig. M.1.5.5.

In Fig. M.1.5.6, you can see a closed thin-walled swept body that was constructed by moving the contour
along the guiding curve shown in Fig. M.1.5.2. The method of moving is determined by params.mode=1
parameter. Each contour segment has a corresponding body face, its name is taken from the corresponding
element of cnames[0] name generator.

params.thickness1 +

params.shellClosed = true
+ params.thickness2

params.parallel = 1

sweptData.contours[0]

sweptData.surface
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Fig. M.1.5.6.

In Fig. M.1.5.7, you can see a non-closed swept body that was constructed by moving the contour along
the guiding curve shown in Fig. M.1.5.2. The method of moving is determined by params.mode=1

parameter. Parameters used to construct the body shown in Fig. M.1.5.4 are not the same as the parameters
for constructing the body shown in Fig. M.1.5.7, the only difference is the value of

params.shellClosed=false.

params.thickness1 =0

params.shellClosed = false
params.thickness2 =0

params.parallel = 1

sweptData.contours[0]

sweptData.surface
Fig. M.1.5.7.

A two-dimensional contour may be drawn on a flat surface or on a curved surface. For example, a body
can be constructed by moving contours on a curved surface. The contours are to be created using the cycles

of one solid body face as shown in Fig. M.1.5.8.
spine

contour(

surface

JE—

contourl

Fig. M.1.5.8.

In Fig. M.1.5.9, you can see a swept body that was constructed by moving two contours on a curved
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surface along the guiding curves shown in Fig. M.1.5.8. The method of moving the contours is determined
by params.mode=1.

params.shellClosed = true params.thicknessl =0
params.parallel = 1 params.thickness2 = 0

sweptData.contour|0]

sweptData.surface

Fig. M.1.5.9.

In Fig. M.1.5.10, you can see a doubly-connected thin-walled swept body that was constructed by moving
two contours on a curved surface along the guiding curves shown in Fig. M.1.5.9.
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params.shellClosed = true params.thickness2 =0

params.parallel = 1 params.thickness|

sweptData.contour|0]

sweptData.surface

Fig. M.1.5.10.

In Fig. M.1.5.11, you can see a doubly-connected non-closed swept body that was constructed by moving
two contours on a curved surface along the guiding curve shown in Fig. M.1.5.9.
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params.shellClosed = false params.thickness1 =0

params.parallel = 1 params.thickness2 = 0

sweptData.contour|[(]

sweptData.surface

Fig. M.1.5.11.

If one surface contains a set of non-intersecting two-dimensional contours then the considered method
defines external and nested internal contours (multilevel nesting can be used). In Fig. M.1.4.12, you can see a
set of non-intersecting two-dimensional contours, a flat surface (MbPlane) and spine guiding curve.
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spine

Q contours
0

S

surface

Fig. M.1.5.12.

In Fig. M.1.5.13, you can see a multi-part multiply-connected swept body that was constructed by moving
a set of flat contours along the guiding curve shown in Fig. M.1.5.12. The contours should not intersect, but
they can be nested several times.
params.shellClosed = true params.thickness1 =0

params.parallel = 1 params.thickness2 = 0

sweptData.contours
sweptData.surface

Fig. M.1.5.13.
In Fig. M.1.5.14, you can see a multi-part multiply-connected thin-walled swept body that was
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constructed by moving a set of flat contours along the guiding curve shown in Fig. M.1.5.12.

params.shellClosed = true
params.thickness +

params.paiallel = 1 ]
+ params.thickness2

sweptData.contours
sweptData.surface

Fig. M.1.5.14.

In Fig. M.1.5.15, you can see a non-closed multi-part swept body that was constructed by moving the set
of flat contours along the guiding curve shown in Fig. M.1.5.12. When a non-closed swept body is
constructed, the contours should not be nested.
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params.sheliClosed = false params.thickness1 = 0

params.parallel = 1 params.thickness2 =0

sweptData.contours

sweptData.surface

Fig. M.1.5.15.

In Fig. M.1.5.16, you can see two three-dimensional contours (contour3D 0 and contour3D 1) and spine
guiding curve that will be used to construct swept bodies.

spine

contour3D 0

contour3D 1
Fig. M.1.5.16.

In Fig. M.1.5.17, you can see a closed doubly-connected thin wall swept body that was constructed by
moving the three-dimensional contours along the guiding curve (please see Fig. M.1.5.16).
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params.shellClosed = true spine params.thickness1 +

+ params.thickness2

N

sweptData.contours3D[1]

sweptData.contours3D[0]

Fig. M.1.5.17.

In Fig. M.1.5.18, you can see two non-closed bodies that were constructed by moving three-dimensional
contours along the guiding curve (please see Fig. M.1.5.16).

params.shellClosed = false spine params.thickness1 = 0
params.thickness2 =0

sweptData.contours3D[1]

sweptData.contours3D[0]

Fig. M.1.5.18.

EvolutionSolid method that is used to construct a swept body adds MbEvolutionSolid constructor to the
log of the newly constructed body, which contains all necessary data to construct the body.
MbEvolutionSolid constructor is declared in ¢r_evolution_solid.h.

test.exe constructs a swept body by «Create->Body->By curves->By moving curves» menu command.
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M.1.6. Constructing a Body by Flat Sections

The method
MbResultType
LoftedSolid ( SArray<MbPlacement3D> & places,
RPArray<MbContour> & contours,
const MbCurve3D * spine,
LoftedValues & params,
SArray<MbCartPoint3D> * points,
const MbSNameMaker & names,
PArray<MbSNameMaker> & snames,
MbSolid *& result )

constructs a body based on flat sections.

Method input parameters are:

* places is the set of local coordinate systems of generating contours,
* contours is the set of generating contours,

* spine is the guiding curve (it may be missing),

*  params are construction parameters,

* points are a set of control points (it may be missing),

* names is face namer,

* snames are namers of generating contours.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns an error code from MbResultType
enumeration.

This method is declared in action_solid.h file.

The surface of the newly constructed body contains all the flat curves defining the body. places set
contains local coordinate systems, two-dimensional contours lie in their XY plane. places and contours sets
are aligned by index: contours][{] is located in XY plane of places[i] local coordinate system. contours may
have arbitrary orientation. If all contours contours are closed, then beginnings of local coordinate system are
changed so that the beginnings should located as close as possible to each other in order to prevent twisting
of the surfaces. points control points permit you to change the joining points in the curves of the set of
contours. If points set is not empty then it should be aligned with places and contours sets. spine guiding
curve can be used to control body shape between sections. Arbitrary curves can be used as guiding curve for
a body.

params parameter contains information about movement mode, presence of body walls and their
thickness and data whether the constructed body is closed. params.thicknessl and params.thickness2
parameters define wall thickness of the constructed thin-walled body. params.thickness1 parameter defines
outward offset from the generator curve, and params.thickness2 parameter defines inward offset from the
generator curve. params.shellClosed parameter controls whether the constructed body is closed.
params.checkSelfInt parameter defines the need to check the result of construction for self-intersection. By
default params.checkSelfint=false and the check is not performed. params.closed parameter controls the
presence of edges of the body. If params.closed=true then there are no edges and the body has torus
topology. params.vector1 and params.vector2 vectors define the direction of the body in the area of the start
and end edges. For example, they permit you to define the direction of the body in the area of the edges
orthogonal to edge planes. By default, params.vector1 and params.vector2 vectors are equal to zero.

In Fig. M.1.6.1, you can see the data used for construction and parameters inheritance scheme for a
constructed body by LoftedValues & params flat sections.
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SweptValues

double thickness] )

double thickness?

bool shellClosed
. bool checkSeUIm‘/

[ LoftedValues j

" bool closed |
MbVector3D wvectorl
MbVector3D wvector2

Fig. M.1.6.1.

names and snames parameters are responsible for naming faces of the newly constructed body.

In Fig. M.1.6.2, you can see a set of two-dimensional contours and their local coordinate systems
(places). Arrows indicate the directions of normals in local coordinate systems.

contours|1]

places[1]

places[2]

\ places[0]

contours[0]
contours[2]

—

places[4]
O \ contours[4]

contours[3] places[3]

Fig. M.1.6.2.

In Fig. M.1.6.3, you can see a body that was constructed by flat sections shown in Fig. M.1.6.2 according
to the specified directions of the normals at the edges if params.closed=false.
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params.shellClosed = true

params.closed = false places[1] params.thicknessl =0
params.thickness2 =0

contours[1]

places[0]
places|2] contours[(]
contours|2] \
params.vectorl
places[4]
contours|4]
places|3]
contours[3]

T2

> params.vector2

Fig. M.1.6.3.

In Fig. M.1.6.4, you can see a body that was constructed by flat sections shown in Fig. M.1.6.2 if
params.closed=true. There are no edges; the body has torus topology.

params.shellClosed = true

places[1]

params.closed = true params.thicknessl =0

params.thickness2 =0

contours[1]

places[0]

laces[2
P 2 contours[0]

contours[2]

places[3]
contours|3]

places|4]
contours|4]

Fig. M.1.6.4.

In Fig. M.1.6.5, you can see a thin-walled body that was constructed by flat sections shown in Fig.
M.1.6.2 without determination of normals at the edges if params.closed=false.
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params.shellClosed = true

params.closed = false

params.thicknessl +
+ params.thickness2

places[0]
contours[0]

params.vectorl =0
params.vector2 =0

places[4]
contours[4]

Fig. M.1.6.5.

In Fig. M.1.6.6, you can see a thin-walled body that was constructed by flat sections shown in Fig.
M.1.6.2 according to specified normals at the edges if params.closed=false.

params.shellClosed = true

params.thickness] +
+ pavams.thickness2

T

places[0]
contours[0]

\

params.vectorl

params.closed = false

places[4]
contours[4]

o params.vectorl

Fig. M.1.6.6.

In Fig. M.1.6.7, you can see a thin-walled body that was constructed by non-closed flat contours with not
defined normals at the edges if params.closed=false. params.thickness1 and params.thickness2 parameters
should not be equal to zero.
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params.vectorl =0

params.shellClosed = true
params.vector2 =0

params.closed = false
places[1] places[2]

contours[1] contours[2]
places[3]

contours[3]

places[0]
places[4]

contours[0]
contours|[4]

params.thickness| + params.thickness2

Fig. M.1.6.7.
In Fig. M.1.6.8, you can see a non-closed body constructed to non-closed flat contours without normals at
the edges if params.closed=false. params.thickness1 and params.thickness2 parameters may be equal to

Z€10.

params.shellClosed = false params.vector]l =0

params.closed = false params.vector2 =0

places[1] places[2]
contours[1] contours|2]

places[3]
contours[3]

places[0]

contours[0] places([4]

contours[4]

params.thicknessl =0

params.thickness2 =10

Fig. M.1.6.8.

If flat contours have unequal quantities of segments, then some segments are divided so that the quantity
of segments in all contous contour sets should be the same. In Fig. M.1.6.9, you can see three contours that

have unequal quantities of segments.
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contours([(] contours[1]

Fig. M.1.6.9.

In Fig. M.1.6.10, you can see a body that was constructed by these contours: one segment of triangular
contour is divided into two segments, and a circle is divided into four arcs.

params.shellClosed = true
params.closed = false

params.thicknessl =0
params.thickness2 =0

params.vector] =0
params.vector2 =0

places[1]

places(0] contours[1] places(2]
contours[0] contours[2]
Fig. M.1.6.10.

points control points permit you to define the position of edges connecting vertices of different contours
in the set. points[7] indicate the positions of the joints between the segments of different contours of the set
that should be connected by edges. To demonstrate the use of points control points, let's construct a body by
flat sections shown in Fig. M.1.6.11.
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points[0] T/, IA points[2]

places[0] places[1] places[2]
contours[0] contours|1] contours|2]
Fig. M.1.6.11.

In Fig. M.1.6.12 and M.1.6.13, you can see bodies that were constructed by flat sections shown in Fig.
M.1.6.11 according to different points control points.

points[0] points[1] points[2]

params.shellClosed = true

params.closed = false

params.thicinessl =0
params.thiciness2 =0

params.vectorl =0
params.vector2 =0

places[2]
places[(]

places|[1] contours[2]
contours[0]
contours[1]
Fig. M.1.6.12.
points[0] points[1] points[2]

params.shellClosed = true

params.closed = false

params.thicknessl =0
params.thickness2 =0

params.vectorl =0
params.vector2 = 0

places[2]
places[0] places[1] contours[2]
contours[0] contours[1]
Fig. M.1.6.13.
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In Fig. M.1.6.14, you can see two two-dimensional contours and spine curve that would be a guiding
curve when a body would be constructed by flat sections with a guiding curve.

contours[1]

places[1] lf
* places[0]

contours[0]

Fig. M.1.6.14.

In Fig. M.1.6.15, you can see a body that was constructed by flat sections and a guiding curve shown in
Fig. M.1.6.14.

params.shellClosed = true
params.closed = false

spine

places[1]
params.thickness] =0 contours[1]
params.thickness2 =10

params.vector]l =0

places[0] params.vector2 = (0

contours[0]
Fig. M.1.6.15.

In Fig. M.1.6.16, you can see a thin-walled body that was constructed by flat sections and the guiding
curve shown in Fig. M.1.6.14.
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params.shellClosed = true

params.closed = false

spine places|1]

contours[1]

places[0]

contours[0] params.thicknessl

params.thickness2

Fig. M.1.6.16.

In Fig. M.1.6.17, you can see a non-closed body that was constructed by flat sections and the guiding
curve shown in Fig. M.1.6.14.

params.shellClosed = false

params.closed = false

spine

places[1]
contours[1]

params.thicknessl =0

params.thickness2 =0

places[0]

contours[0]

Fig. M.1.6.17.

LoftedSolid method constructs a body by flat sections; it adds MbLoftedSolid constructor in the log of
the newly constructed body. This constructor contains all data required to construct a body. MbLoftedSolid
constructor is declared in cr_lofted_solid.h file.
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test.exe test application constructs a body by flat sections using «Create->Body->By curves->By
sections»; «Create->Body->By curves->By sections with a guiding curve»; «Create->Body->By curves->By
sectionsy»; and «Create->Shell->By curves->By sections with a guiding curve» menu commands.

M.1.7. Creating a Body by a Specified Set of Faces

The method
MbSolid *
CreateSolid ( MbFaceShell & faceSet,
const MbSNameMaker & names )
creates a body with the specified set of faces without construction history.
Method input parameters are:
¢ faceSet is the set of faces,
* names is faces namer.
If successful, the method returns the newly constructed body, otherwise it returns zero.
This method is declared in action_solid.h file.
faceSet parameter contains the initial set of faces for a body. names parameter is responsible for naming
faces of the constructed body.
In Fig. M.1.7.1, you can see a body that was constructed by a set of faces.

faceSet

Fig. M.1.7.1.

This method gives names to unnamed faces, edges ribs and vertices and then it creates a body for the
specified set of faces. This method doesn't check or construct anything. If the set of faces contains boundary
ribs, this method constructs a non-closed body. CreateSolid method adds MbSimpleCreator simple
constructor to the log of the newly constructed body. This constructor is declared in cr_simple_creator.h file.

M.1.8. Constructing a Body Based on a Surface

The method
MbResultType
SurfaceShell ( const MbSurface & surface,
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const MbSNameMaker & names,
MbSolid *& result )
constructs a body consisting of one face based on an original surface.
Input parameters of the method are as follows:
* surface is the original surface,
* names is a face namer.
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
This method is declared in action_shell.h file.
names parameter permits to assign names to faces, vertexes, and edges of the constructed body.
Fig. M.1.8.1 shows a body constructed from a surface cyclically closed in the first parametric direction.

Fig. M.1.8.1.

This method doesn't check or calculate anything. The constructed body has only one face. The face differs
from the initial surface in that it has edges on the borders and seams, and it has vertexes in edge mating
points. If the initial surface is cyclically closed in one or both parametric directions, then the constructed
body will have just one face cyclically closed by the corresponding edges. If the initial surface has borders,
then the method will construct a non-closed body. The method adds MbSimpleCreator simple constructor
declared in cr_simple_creator.h file in newly constructed body log.

M.1.9. Constructing a Ruled Body

The method
MbResultType
RuledShell ( RuledSurfaceValues & params,
const MbSNameMaker & names,
bool isPhantom,
MbSolid *& result )
constructs a non-closed ruled body from two parametrically defined curves.
Input parameters of the method are as follows:
* params are construction parameters,
* names is a face namer,
* isPhantom is a construction goal flag (true means that the phantom mode is on).
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
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enumeration.

This method is declared in action_shell.h file.

params construction parameters contain information about the geometry required to construct the body,
see Fig. M.1.9.1.

ERuledSurfaceValuesj

MbCurve3D * curve0
MbCurve3D * curvel
SArray<double> breaks0
SArray<double> breaks1
bool  joinByVertices
bool  checkSelfint

Fig. M.1.9.1.

A ruled body is constructed from two curves: params.curve0 and params.curvel. If compound curves
are used then a ruled surface will be constructed based on each pair of compound curve segments, and a
body face will be constructed on each surface. Adjacent faces will have common edges. Params.curve( and
params.curvel curves can be additionally split into segments using params.breaks0O and params.breaksl
parameters. params.joinByVertices is a parameter that indicates whether it is required to connect the
contours having the same number of segments through the vertexes. params.checkSelfInt is a parameter that
indicates whether it is necessary to check the curves for self-intersection. By default,
params.joinByVertices=false and params.checkSelfInt=false.

Fig. M.1.9.2 shows a ruled body constructed from compound curves and each curve has three segments.

params.curvel

result

params. curve(

Fig. M.1.9.2.

The constructed body has one or several faces. A ruled surface always has borders formed by the initial
curves. This method can check the faces for self-intersection. params.curve0 and params.curvel curves
can be cyclically closed. The method adds MbRuledShell constructor declared in cr_simple_creator.h file in
a newly constructed body log.

M.1.10. Constructing a Body from a Curve Grid
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The method
MbResultType
MeshShell ( MeshSurfaceValues & params,
const MbSNameMaker & names,
bool isPhantom,
MbSolid *& result )
constructs a body from a curve grid defined in construction parameters.
Input parameters of the method are as follows:
* params are construction parameters,
* names is a face namer,
* isPhantom is a construction goal flag (true means that the phantom mode is on).
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
This method is declared in action_shell.h file.
params construction parameters contain information about the geometry required to construct the body,
see Fig. M.1.10.1.

EMeshSurfaceValuesj
RPArray<MbCurve3D> curvesU
RPArray<MbCurve3D> curvesV
bool uClosed
bool vClosed
bool checkSelfInt
MbeMatingType type0
MbeMatingType typel
MbeMatingType type2
MbeMatingType type3
MbSurface * surface(
MbSurface * surfacel
MbSurface * surface2
MbSurface * surface3
MbPomt3D ** point
bool defaultDir(
bool defaultDirl
bool defaultDir2
bool defaultDir3

Fig. M.1.10.1.

The body is constructed from two sets of curves: params.curveU and params.curveV. params.curveU
curves are located along the first parametric direction of the body faces. params.curveV curves are located
along the second parametric direction of the body faces. params.uClosed is a parameter that indicates
whether the surface is closed along the first parametric direction, it requires all curves from params.curveU
curve set to be cyclically closed. params.vClosed is a parameter that indicates whether the surface is closed
along the second parametric direction, it requires all curves from params.curveV curve set to be cyclically
closed. params.uClosed and params.vClosed permit to build non-closed surfaces on cyclically closed
curves. params.checkSelfInt indicates whether the surface of the constructed body should be checked for
self-intersection. By default, params.checkSelfInt=false.

params.type0, params.typel, params.type2, params.type3 parameters together with params.surface0,
params.surfacel, params.surface2, params.surface3 surfaces define body behavior on the borders, when
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the body parameters are v=vMin, u=uMax, v=vMax, u=uMin, correspondingly. params.type0,
params.typel, params.type2, params.type3 parameters can take the values trt Position, trt Tangent,
trt Normal from MbeMatingType enumeration. By default, the parameters have trt Position value. It means
that the body surface contains the curves. params.surface0, params.surfacel, params.surface2,
params.surface3 surfaces can be equal to zero. trt Tangent means that the corresponding body border is
tangential to params.surface0, params.surfacel, params.surface2, params.surface3 surfaces,
correspondingly. trt Normal means that the corresponding body border is orthogonal to params.surface0,
params.surfacel, params.surface2, params.surface3 surfaces, correspondingly.

Fig. M.1.10.2 shows a curve grid containing four cyclically closed curves of params.curveU set and two
non-closed curves of params.curveV set.

params.curvesV[1] params.curvesU[3]

params.curvesU[2]

params.curvesU[1]

params.curvesV[(]

params.curvesU[0]

params.type0 = params.typel = params.type2 = params.type3 = trt Position

Fig. M.1.10.2.
Fig. M.1.10.3 shows a body constructed from a curve grid shown in Fig. M.1.10.2.
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Fig. M.1.10.3.

Fig. M.1.10.4 shows a curve grid containing two non-closed curves of params.curveU set and three
non-closed curves of params.curveV, and two end curves of which degenerate to points.

params.type2 = trt Normal

params.curvesV/[0]

params.curvesU[1]

params.curvesV/[1]

params.typel =params.type3 = trt_Position

params.curvesV|[2]

params.curvesU[0]

params.type0 = trt Normal

Fig. M.1.10.4.

Fig. M.1.10.5 shows a body constructed from curve grid shown in Fig. M.1.10.4. The borders of the
constructed body corresponding to v=vMin and v=vMax parameters are orthogonal to flat surfaces
params.surface0 and params.surface2, because params.type0) u params.type2 parameters are set to
trt Normal.
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Fig. M.1.10.5.

The method adds MbMeshShell constructor declared in cr_simple creator.h file in a newly constructed
log of the body.

M.1.11. Constructing a Conjugating Body from Non-Connected Faces

The method
MbResultType
FacesFillet ( const MbSolid & solid1,
const MbFace> & facel,
const MbSolid & solid2,
const MbFace> & face2,
const SmoothValues & params,
const MbSNameMaker & names,
MbSolid *& result )
constructs a non-closed body formed by a fillet face between two non-connected faces.
Input parameters of the method are as follows:
* solidl is the first body,
» facel is a mated border of the first body,
* solid2 is the second body,
» face2 is a mated border of the second body,
*  params are construction parameters,
* names is a face namer.
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
This method is declared in action_shell.h file.
The method constructs a body formed by a mating face that enables smooth mating of facel and face2.
solid1 and solid2 parameters contain the initial bodies having facel and face2, correspondingly.
The constructed face may have a shape of circle arc, ellipse, hyperbola or parabola in a cross-section.
params parameter defines the shape of the mating face. params construction parameter contains information
about the geometry required to construct the body, see Fig. M.1.11.1.
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E SmoothValues j

double distancel
double distance2
double conic
double beglength
double endLength
MbSmoothForm form = { st _Span,
st Fillet,
st_Chamfer,
st Slantl,
st Slant? }
ComeForm smoothCorner = { ec_pointer,
ec_either,
ec_uniform,
ec_sharp }
bool prolong
bool autoSurface
bool keepCant
bool strict
bool equable
MbVector3D vectorl
MbVector3D vector2

Fig. M.1.11.1.

This method uses only four variables from the data shown in Fig. M.1.11.1: params.distancel,
params.distance2, params.conic, and params.prolong. Other parameters are used to construct mating
surfaces based on body edges. params.form takes st_Fillet value.

The body is constructed on the basis of facel and face2. params.distancel and params.distance?2 are the
parameters that determine arc radius (or radius of ellipse semi-axis) of mating surface cross-section.
params.conic coefficient defines the shape of the mating surface. params.conic coefficient can range from
0.05 to 0.95. If params.distancel=params.distance2 and params.conic=0, then a mating surface with circular
arc-shaped cross-section is constructed. The mating surface is constructed by moving a sphere tangential to
facel and face2. Reference borders of the mating body are located at contact points of the sphere and also
facel and face2. If params.conic=0.5, then cross-section of a mating face is a parabolic arc. If
params.conic>0.5, then cross-section of the mating face is a hyperbolic arc. If params.conic<0.5, then cross-
section of the mating face is an elliptical arc.

Fig. M.1.11.2 shows two bodies, the two faces of which will be used to construct mating bodies having
various shapes.
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Fig. M.1.11.2.

Fig. M.1.11.3 shows a mating body with circular arc-shaped cross-section, this is achieved by the
following equalities: params.distancel=params.distance2, params.conic=0.

params.conic = 0 params.distancel params.distance2

params.prolong = true

Fig. M.1.11.3.

Fig. M.1.11.4 shows a mating body with hyperbolic arc-shaped cross-section, which is achieved
byparams.conic=0.8 equality. If params.prolong=true, then a reference curve of the mating face goes
beyond face2 at a specific section.
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params.conic = 0.8

params.prolong = true

Fig. M.1.11.4.

Fig. M.1.11.5 shows a mating body with elliptical arc-shaped cross-section, that is achieved by
params.conic=0.2 equality. If params.prolong=false, then a mating face is cut on the section where the

reference curve goes beyond face?2.

params.conic = (.2
params.prolong = false

%
W%

Fig. M.1.11.5.

FacesFillet method adds solid1 constructor, solid2 constructor and MbFilletShell constructor declared in
cr_fillet shell.h file in a log of the newly constructed body.

M.1.12. Constructing a Patch

The method
MbResultType

PatchShell (const RPArray<MbCurve3D> & curves,

const PatchValues &

params,

const MbSNameMaker & names,
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MbSolid *& result )
constructs a patch from a set of curves.

Input parameters of the method are as follows:
e curves is a set of curves,
*  params are construction parameters,
* names is a face namer.

The output parameter of the method is a result constructed body.

If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.

This method is declared in action_shell.h file.

curves and params parameters contain geometric information required to construct a patch. names
parameter defines the names of faces of the constructed body.

The method constructs a body formed by a face, the borders of which contain defined curves. The body
will be constructed correctly if the curves of curves set mate with each other and form a closed contour.

If the curves of curves set lie in one plane, then the patch will be a part of the plane lying within the
contour formed by the curves. If all the curves of curves set lie in one curvilinear surface, then the patch will
be a part of the common surface lying within the contour formed by the defined curves. If curves set
contains a single curve, then this curve will be split into two parts, and patch surface will be a ruled surface
having two poles. The patch is constructed the same way if curves set contains two curves; the patch surface
will be a ruled surface with two poles. If curves set contains three curves, then patch surface will be
MbCornerSurface built based on three curves, the surface has a pole. If curves set contains four curves, then
patch surface will be MbCornerSurface constructed based on four curves. In other cases, construction can be
denied.

Fig. M.1.12.1 shows eight curves lying on the edge of internal face cut. Fig. M.1.12.2 shows a patch
constructed from the curves shown in Fig. M.1.12.1.

curves

Fig. M.1.12.1.
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Fig. M.1.12.2.

Fig. M.1.12.3 shows six curves lying on the borders of various faces produced by cutting faces with a
common surface.

Fig. M.1.12.3.

If border edges keep information about the cutting surface after cutting, then the cutting surface might be
used to construct the patch. Fig. M.1.12.4 shows an example of constructing a patch as a part of the cutting
surface that formed border edges shown in Fig. M.1.12.3.

result

Fig. M.1.12.4.
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As a rule, the curves for curves set are taken from border edges. After construction, the patch is often
stiched with other bodies adjacent to its borders.

PatchShell method adds MbPatchCreator constructor into a log of the newly constructed body.
MbPatchCreator constructor is declared in cr_patch_creator.h file.

M.1.13. Stiching Body Faces

The method
MbeStitchResType
StitchToOneSheetSolid ( const RPArray<const MbSolid > & solids,
const MbSNameMaker & names,
bool formSolidBody,
double stitchPrecision,
MbSolid *& result)
stiches the faces of several bodies into a single body.
Input parameters of the method are as follows:
¢ solids are stiched bodies,
* names is operation namer,
* formSolidBody is a flag of stiching and nesting processing,
*  stitchPrecision is a stiching precision.
The output parameter of the method is result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
This method is declared in action_shell.h file.
The method searches the pairs of border edges matching each other by length and position, and constructs
a curve formed by intersection of faces of the edges found at the selected section. When intersection curve is
successfully constructed, the pair of border edges is replaced by one edge that connects adjacent body faces.
If required, the external sides of some faces are flipped. stitchPrecision parameter determines the maximum
distance for corresponding points of stiched edges. solids set can contain any finite number of bodies. names
parameter defines the names of the sewd body edges. If formSolidBody=true, then result constructed body is
checked for absence of border edges, nested shells are searched, and internal shells are flipped if required. If
formSolidBody=false, then result constructed body can have border edges, and nested shells are not
determined.
Fig. M.1.13.1 shows two stiched bodies: solids[0] and solids[1]. Fig. M.1.13.2 shows result body, after
stiching the edges are filleted.
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solids|0]

solids[1]

result

with fillet
on stitched edges

Fig. M.1.13.1. Fig. M.1.13.2.

StitchToOneSheetSolid method adds MbStitchedSolid constructor containing all data required to
construct the body, into a log of newly constructed body. MbStitchedSolid constructor is declared in
cr_stitch_solid.h file.

M.1.14. Construction of Body Based on Curves or Curve Points

The method
MbResultType
LoftedShell ( const RPArray<MbCurve3D> & curves,

const MbSNameMaker & names,
SimpleName name,
MbSolid *& result )
constructs a body with one face, the surface of which contains a set of curves.
Input parameters of the method are as follows:

* curves is a set of curves,

* names is a face namer,

* name is an identifier.

The output parameter of the method is a result constructed body.

If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.

This method is declared in action_shell.h file.

A surface of the constructed body contains the entire curves set. Surface shape of the body depends not
only on the curve shape and relative position, but also on their orientation and also the positions of their
starting points. In order to prevent body surface self-intersection and twisting, the adjacent curves of curves
set should have the same direction, and closed curve starting points should be close to each other. If all
curves in curves set are closed, then the surface of the constructed body will be closed along one of
parametric directions.

The names and name parameters define a name of face in the constructed body.

Fig. M.1.14.1 shows curves set.
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Fig. M.1.14.1.
Fig. M.1.14.2 shows a body constructed from the curves shown in Fig. M.1.14.1.

result

Fig. M.1.14.2.

Method
MbResultType
LoftedShell ( const RPArray< SArray<MbCartPoint3D> > & points,

const MbSNameMaker & names,
SimpleName name,
MbSolid *& result )
constructs a non-closed body from one face passing through the control points.
Input parameters of the method are as follows:

* points are control point groups,

e names is a face namer,

* name is an identifier.

The output parameter of the method is a result constructed body.

If successful, the method returns rt Success, otherwise it returns an error code from MbResultType
enumeration.

This method is declared in action_shell.h file.

The control points are grouped by SArray containers. Spline curves are constructed from point sets stored
in each SArray container before the body is constructed. Then LoftedShell method described above
constructs the body from the curve set. The surface of the constructed body passes through all the points
defined by points parameter. The shape of body surface is influenced not only by the relative position of the
points, but also by their order in groups. In order to prevent surfaces of the from self-intersection and
twisting, point sequences in the adjacent groups should have the same direction, and starting points in
adjacent groups should be close to each other. In order to construct a surface closed along one of parametric
directions, first and last points in every SArray container should match.

The names and name parameters define a name of face in the constructed body.

Fig. M.1.14.3 shows a set of control points named points, each group has a different color.
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points

Fig. M.1.14.3.

Fig. M.1.14.4. shows a body and control points used to construct it.

result

Fig. M.1.14.4.

LoftedShell method adds LoftedShell constructor containing all data required to construct the body into a
log of newly constructed body. MbThinShellCreator constructor is declared in cr_rib_solid.h file.

M.1.15. Construction of Equidistant Body

The method
MbResultType
OffsetShell ( MbSolid & solid,
MbeCopyMode sameShell,
RPArray<MbFace> & faces,
bool checkFacesConnection,
SweptValues & params,
const MbSNameMaker & names,
MbSolid *& result )
constructs an equidistant non-closed body based on a set of faces.
Input parameters of the method are as follows:
* solid is the original body,
*  sameShell is a version of original body copying method,
» faces are the faces of the original body,
* checkFacesConnection is a flag that checks the connection of selected faces,
*  params are construction parameters,
* names is a face namer.
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
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enumeration.

This method is declared in action_shell.h file.

The method constructs a body, the faces of which are equidistant to faces of seolid original body.
sameShell parameter controls transfer of faces, edges and vertices from solid original body to result
constructed body. params parameter contains information about the distance from constructed faces from the
faces of the original body. The distance may be equal to params.thickness1 in positive direction of the
normal to the face or to params.thickness2 in negative direction of the normal to the face of the original
body. If params.shellClosed=false, then a non-closed body will be constructed. names parameter is used to
name the faces of the constructed body.

sameShell parameter can take one of the following four values: cm Copy, cm_ KeepSurface,
cm_KeepHistory and ¢cm_Same. MbeCopyMode enumeration is described in Item 0.7.9. Copying a Set of
Faces.

Fig. M.1.15.1 shows a body, its selected faces will be used to construct an equidistant body.

solid

faces

Fig. M.1.15.1.

Fig. M.1.15.2 shows constructed equidistant body.

90



result

params.thickness1 > 0 params.thickness2 =0

Fig. M.1.15.2.

If faces set contains all faces of solid original body, result constructed body will be equidistant to the
original body.

OffsetShell method adds MbShellSolid constructor containing all data required to construct the body into
a log of newly constructed body. MbShellSolid constructor is declared in cr_thin_shell solid.h file.

test.exe test application constructs an equidistant non-closed body using New -> Shell -> Based on Shell -
> Equidistant to faces menu command.

M.1.16. Extension of Body Face

The method
MbResultType
ExtensionShell ( MbSolid & solid,
MbeCopyMode sameShell,
MbFace & face,

const RPArray<MbCurveEdge> & edges,
const ExtensionValues & params,
const MbSNameMaker & names,
MbSolid * & result )
extends non-closed body by extruding the selected face of border edges of selected body face.
Input parameters of the method are as follows:
* solid is the original body,
* sameShell is a version of original body copying method,
* face is the original body face,
* edges is a set of face edges that are extruded,
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*  params are construction parameters,

* names is a face namer.

The output parameter of the method is a result constructed body.

If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.

This method is declared in action_shell.h file.

The method extends face from the side of boundary edges. face is a part of solid body. sameShell
parameter can take one of the following four values: cm_Copy, cm_KeepSurface, cm_ KeepHistory and
cm_Same. MbeCopyMode enumeration is described in Item O.7.9. Copying a Set of Faces.

params parameter defines face extension methods and contains data shown in Fig. M.1.16.1.

EExtensionValues j

ExtentionType type = { et same,
et_tangent,
et_direction }

ExtentionWay  way = { ew_distance,
ewW_vertex,
ew_surface }

LateralKind kind = { le_normal,
le_prolong }

MbCartPoint3D point
MbVector3D direction

double distance
bool prolong
bool combine

MbFaceShell #  shell
MbltemIndex faceIndex

Fig. M.1.16.1.

There are three types of face extension.

Extension type is defined by params.type parameter. If params.type=et_same, then the original face is
extended by expanding its surface parameter definition area and moving border edges. If
params.type=et_tangent, then new ruled faces that smoothly join with face are smoothly joined with face
using edges. If params.type=et_direction, then new faces are joined to face of the original body using edges.
New faces are received by extrusion of the curved edges in params.direction.

params.way parameter defines the distance used to extend face face. If params.way=ew_distance, then
the face is extended by params.distance. If params.way=ew_vertex, then the face is extended by the distance
defined by params.point. If params.way=ew surface, then the face is extended up to params.shell.
params.faceIndex defines the closest face of params.shell to face. If params.way!=ew surface, then
params.shell may equal zero.

params.kind parameter defines the method how extension border face will be cut in the beginning and in
the end of each edge of edges set. If params.kind=le normal, then face extension border is cut along the
normal to the corresponding edge of edges set. If params.kind=le prolong, then face extension border is
defined by the edges adjacent to the edges of edges set.

names parameter is used to name the faces of the constructed body.

Fig. M.1.16.2 shows the body face, the two border edges of which will be extended.
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edges

Fig. M.1.16.2.

Fig. M.1.16.3 and M.1.16.4 show the results of face extension by expanding surface parameter definition
area using various values of params.kind parameter.

result

params.type = et_same
params.way — ew_distance params.distance
params kid =le normal

Fig. M.1.16.3.
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result

params.type — et_same
params.way = ew_distance  params.distance
params kid = le prolong

Fig. M.1.16.4.

Fig. M.1.16.5 shows the result of face extension by adding other faces that smoothly join with face.
Fig. M.1.16.6 shows the result of extending face in the selected direction.

result

params.type = et_tangent

params.way = ew distance ~ params.distance
params.kid =le normal

Fig. M.1.16.5.
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result params.direction

/

params.type = et_direction
params.way = ew distance  params.distance
params.kid =le normal

Fig. M.1.16.6.

ExtensionShell method adds MbExtensionShell constructor containing all data required to construct the
body into a log of the newly constructed body. MbExtensionShell constructor is declared in
cr_extension_shell.h file.
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M.2. OPERATIONS ON BODIES

One of approaches to construction of bodies in geometrical modelling is similar to making a modeled
object. First, simple bodies are constructed and then a set of actions is executed in order to construct more
complex bodies from simple bodies. More complex bodies are constructed by executing operations with
previously constructed bodies. All operations are recorded in a construction log. For closed and non-closed
bodies the same operations can lead to different results.

M.2.1. Boolean Operation on Bodies

The method
MbResultType BooleanResult( const c¢3d::SolidSPtr & solidi,
MbeCopyMode sameShelll,
const c3d::SolidSPtr & solid2,
MbeCopyMode sameShell2,
const MbBooleanOperationParams & params,
c3d::SolidSPtr & result );

constructs a new body by executing a Boolean operation on two specified bodies.

Input parameters of the method are as follows:

* solidl - the first body for the Boolean operation;

* sameShelll - copying method for the first body;

e solid2 - the second body for the Boolean operation;

e sameShell2 - copying method for the second body;

* params - the parameters of the boolean operation;
Method output parameter:

* result - result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration. The method is declared in action_solid.h file.

The method executes merge, intersect or subtract operations on points of two bodies (solid1 and solid2).
sameShelll and sameShell2 parameters control transfer of faces, edges and vertices of solidl and solid2
original bodies to result constructed body.

sameShelll and sameShell2 parameters may take one of the following four values: c¢m_ Copy,
cm_KeepSurface, cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9.

Copying a Set of Faces.

The MbBooleanOperationParams class contains parameters for performing a Boolean operation. When
creating an object of the MbBooleanOperationParams class, one of the following constructors is used:

MbBooleanOperationParams( OperationType oType,
const MbBooleanFlags & flags,
const MbSNameMaker & operNames,

IProgressIndicator * progress = nullptr )

MbBooleanOperationParams( OperationType oType,
bool closed,
const MbSNameMaker & operNames,

IProgressIndicator * progress = nullptr )
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*  oType - type of boolean operation;

* flags - boolean operation control flags;

* operName - an object for naming the new objects;
* closed - closedness of operands' shells;

*  progress - progress indicator.

The variant of the MbBooleanOperationParams object with the closed parameter works only for non-
closed bodies and tells the operation to check the result for closedness.

oType (OperationType) parameter defines Boolean operation type; it takes one of the following three
values: bo Union, bo Intersect, bo Difference. If o7Type=bo Union, then the method merges solidl and
solid2 bodies; if oType=bo Intersect, then the method intersects solidl and solid2 bodies; if
oType=bo_Difference, then the method subtracts solid2 body from solid1 body.

The MbSNameMaker operNames parameter is used to name the resulting boolean operation objects.
The MbBooleanFlags flags parameter contains the control flags for the boolean operation.

The object has the following flags, which can be set in the constructor, when the object is created, or with
separate setter functions:

bool mergeFaces; - Whether to merge similar faces;

bool mergeEdges; - Whether to merge similar edges;

bool closed; - Closedness of operands' shells;

bool enclosureCheck; - Check shell on nesting.;

bool allowNonIntersecting; - Allow a final result if there is no intersection;

bool cutting; - Flag of cutting the shell in the construction of cuts and sections;
bool repairShellEdges; - Flag of input shells edges repair.

In Fig. M.2.1.1, solid1 and solid2 original operand bodies are shown.

Fig. M.2.1.1.
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In Fig. M.2.1.2, you can see the result of Boolean operation that merges solid1 and solid2 bodies shown
in Figure M.2.1.1.

oTvpe =bo_Union
solid1+solid2
Fig. M.2.1.2.

In Fig. M.2.1.3, you can see the result of Boolean operation that intersects solidl and solid2 bodies
shown in Figure M.2.1.1.

oType =bo_Intersect

solid1 & solid2
Fig. M.2.1.3.
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In Fig. M.2.1.4, you can see the result of Boolean operation that substracts solid2 body from solid1 body;
they are shown in Figure M.2.1.1.

oType = bo Difference
solid1 - solid2
Fig. M.2.1.4.

In Fig. M.2.1.5, you can see the result of Boolean operation that subtracts solid1 body from solid2 body;
two original bodies are shown in Figure M.2.1.1.

oType =bo_Difference

solid2 - solid1

Fig. M.2.1.5.

In order to demonstrate the use of mergeFaces parameter, let's analyze Boolean operations executed on
solid1 and solid2 original bodies shown in Figure M.2.1.6.
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solid2

Fig. M.2.1.6.

In Fig. M.2.1.7, you can see result body that has was constructed by merging solidl and solid2 bodies,
when the method was used with mergeFaces==true. In Fig. M.2.1.8, you can see result solid that was
constructed by merging solidl and solid2 bodies, when the method was used with mergeFaces—false
parameter. Coinciding faces are not merged in Figure M.2.1.8.

oType = bo_Union mergeFaces = true

solid1 + solid2

Fig. M.2.1.7.
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olype =bo_Union mergelFaces = false

solid1 + solid2

Fig. M.2.1.8.

In Fig. M.2.1.9, you can see result body that was constructed by subtracting solid2 body from solid1
body, when the method concerned was used with closed== true parameter. In Fig. M.2.1.10, you can see
result body that was constructed by subtracting solid2 body from solid1 body when the method was used
with closed==false parameter. Coinciding faces are not merged in Figure M.2.1.10.

oType = bo Difference  mergeFaces = true

solid1 - solid2

Fig. M.2.1.9.
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oType =bo Difference  mergeFaces = false

solid1 - solid2

Fig. M.2.1.10.

BooleanResult and BooleanSolid methods add MbBooleanSolid constructor in the log of newly
constructed body that contains all data required to execute the operation. MbBooleanSolid constructor is

declared in cr_boolean_solid.h file.

test.exe test application executes Boolean operations on bodies using New ->Body -> By Gluing to Body
-> a Body, New ->Body -> By cutting from Body ->Body, New ->Body -> Intersecting with Body ->Body
menu commands.
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M.2.2. Boolean Operation on Non-Closed Bodies

The BooleanShell function has been deprecated. Instead, you can use the BooleanResult function with the
MbBooleanResultParams parameter.

M.2.3. Boolean Operation on Extrusion Body

The method
MbResultType
ExtrusionResult ( MbSolid & solid,

MbeCopyMode sameShell,
const MbSweptData & sweptData,
const MbVector3D & direction,
ExtrusionValues & params,
OperationType oTpe,
const MbSNameMaker & names,
PArray<MbSNameMaker> & snames,
MbSolid *& result )
constructs an extruded body and executes Boolean operation on the given body using the constructed body.

Input parameters of the method are as follows:

* solid is a body given for Boolean operation,

*  sameShell is copying version for the given body,

* sweptData contains data on generating curves for construction of extruded body,

e direction is extrusion direction,

*  params are construction parameters,

* oType is Boolean operation type: bo_Union means merging of the bodies,
bo_Intersect means intersection of the bodies,
bo_Difference is subtraction of the bodies,

* names is operation namer,

* snames are namers for extruded body faces.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration. The method is declared in action_solid.h file.

This method executes successive merging of the following two methods: ExtrusionSolid method that
constructs a body by extruding sweptData curves according to given params parameters in direction and
BooleanSolid method that executes oType Boolean operation on solid body that was constructed on the
previous step. ExtrusionSolid method is described in item M.1.3. Constructing an Extrusion B, and
BooleanSolid method is described in item M.2.1. Boolean Operation on. sameShell parameter controls
transfer of faces, edges and vertices from solid original body to result constructed body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

oType (OperationType) parameter defines Boolean operation type; it takes one of the following three
values: bo_Union, bo_Intersect, bo_Difference. If 07ype=bo_Union then the method merges solid body and
the extruded body; if o7ype=bo_Intersect, then the method intersects solid body and the extruded body; if
oType=bo_Difference, then the method subtracts the extruded body from solid body. names and snames
parameters provide naming of the faces for newly constructed body.

If the body is constructed by extruding curves, then ExtrusionResult method provides the same
capabilities as ExtrusionSolid method: extruded curves may be located in a plane (Figure M.1.3.2), at a
curved surface (Figure M.1.3.12) or in space (Figure M.1.3.20). Extrusion may be executed in forward,
backward or both directions; with slope or aclinal faces newly constructed body may completely fill closed
curves (Figure M.1.3.13) or have a thin wall (Figure M.1.3.14). We shall not repeat the description of all
features of the method, we shall rather focus on some features associated with Boolean operations.

In Fig. M.2.3.1, you can see solid body, a generating curve included in sweptData data and extrusion
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direction.

solid

sweptData.surface

F
direction

sweptData.contours[0]

Fig. M.2.3.1.

In Fig. M.2.3.2, you can see the result of the Boolean operation that merges solid body and a thin-walled
body received by extruding sweptData generating curve according to direction shown in Figure M.2.3.1 for
predefined distance.

params.shellClosed = true oType =bo_Union

sweptData.contours[0]

il
direction

params.thickness2 params.thickness] =0

params.sidel.scalarValue params.side2.scalarValue

params.sidel.way = sw_scalarValue params.side2. way = sw_scalarValue

params.sidel.race = 0 params.sidel.race = 0
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Fig. M.2.3.2.

In Fig. M.2.3.3, you can see the result of Boolean operation that merges solid body and a body received
by extrusion of sweptData generating curve according to direction shown in Figure M.2.3.1. Generating
curve was extruded in backward direction without a slope with «To Nearest Objects» option

(params.side2.way=sw_shell).

params.shellClosed = true oType =bo Union

sweptData.contours[0]

il
direction

params.thickness1 =0 I
params.thickness2 =0 .
params.side?.scalarValue

params.sidel.scalarValue =0 params.side2.way = sw_shell

params.sidel.way = sw_scalarValue params.side2.race = ()

params.sidel.race =0
Fig. M.2.3.3.

In Fig. M.2.3.4, you can see the result of the Boolean operation that subtracts a body received by
extruding sweptData generating curve from solid body according to direction shown in Figure M.2.3.1.
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params.shellClosed = true oType =bo_Difference

sweptData.contours[0]

direction

params.thicknessl =0

_
params.thickness2 =0

- params.side2.scalarValue

params.sidel.scalarValue =0 params.side2. way = sw scalarValue

params.sidel.way = sw_scalarValue params.sidel.race = 0
params.sidel.race =

Fig. M.2.3.4.

In Fig. M.2.3.5, you can see the result of Boolean operation that subtracts a body received by extrusion of
sweptData generating curve from solid body according to direction shown in Figure M.2.3.1. Generating

curve was extruded in backward direction without a slope with «To Nearest Objects» option
(params.side2.way=sw_shell).
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params.shellClosed = true oType =bo Difference

sweptData.contours[0]

sl

direction
params.thicknessl =0 ——
params.thickness2 =0 — —— params.side scalarValue
params.sidel.scalarValue =0 params.side2.way = sw_shell

params.sidel. way = sw_scalarValue params.side2.race = 0

params.sidel.race =0

Fig. M.2.3.5.

In Fig. M.2.3.6, you can see the result of Boolean operation that intersects solid body and a body received
by extrusion of sweptData generating curve according to direction shown in Figure M.2.3.1.

params.shellClosed = true oType = bo_Intersection

sweptData.contours[0]

params.thickness2 = O params.side2.scalarValue

dlrectlon
params.thickness1 = -
e
_

params.side).scalarValue = params.side2. way = sw scalarValue

params.sidel . way = sw_scalar\v’alue params.side2.race =0

params.sidel.race = 0

Fig. M.2.3.6.
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In Fig. M.2.3.7, you can see the result of the Boolean operation that intersects solid body and a body
received by extruding sweptData generating curve according to direction shown in Figure M.2.3.1. The
generating curve was extruded in the backward direction without a slope with«To Nearest Objects» option.

params.shellClosed = true oType = bo Intersection
sweptData.contours[0] result
direction
params.thicknessl =0 — ]

params.thickness2 =0 | we———"" params.side2.scalarValue

params.sidel.scalarValue = 0 params.side2.way = sw_shell

params.sidel.way = sw_scalarValue params.side2.race =0

params.sidel.race =0

Fig. M.2.3.7.

ExtrusionResult method adds MbExtrusionSolid constructor in the log of newly constructed body that
contains all data required to execute the operation. MbExtrusionSolid constructor is declared in
cr_extrusion_solid.h file.

test.exe test application executes Boolean operations on the body recieved by extruding a body using New
->Body -> By Gluing to Body -> By Extruding Curve, New ->Body -> Cut from Body -> By Extruding
Curve, New ->Body -> Intersection with Other Body -> By Extruding Curve menu commands.

M.2.4. Boolean Operation on Revolution Body

The method
MbResultType
RevolutionResult ( MbSolid & solid,
MbeCopyMode sameShell,
const MbSweptData & sweptData,
const MbAxis3D & axis,
RevolutionValues & params,
OperationType oTjpe,
const MbSNameMaker & names,
PArray<MbSNameMaker> & snames,
MbSolid *& result )
constructs a rotation body and executes a Boolean operation of determined body with constructed body.
Input parameters of the method are as follows:
* solid is a body given for Boolean operation,
* sameShell is copying version for the given body,
* sweptData contains data on generating curves for construction of extruded body,
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e axis is a rotation axis,

*  params are construction parameters,

* 0oType is Boolean operation type: bo_Union means merging of the bodies,
bo_Intersect means intersection of the bodies,
bo_Difference means subtraction of the bodies,

* names is operation namer,

* snames are namers of rotation body faces.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration. The method is declared in action_solid.h file.

This method executes successive merging of the following two methods: RevolutionSolid method that
constructs a body by extruding sweptData curves according to params parameters in direction, and
BooleanSolid method that executes o7ype Boolean operation on solid body that was constructed in the
previous step. RevolutionSolid method is described in item M.1.4. Constructing a Revolution , and
BooleanSolid method is described in item M.2.1. Boolean Operation on. sameShell parameter controls
transfer of faces, edges and vertices from solid original body to result constructed body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

oType (OperationType) parameter defines Boolean operation type; it takes one of the following three
values: bo_Union, bo_Intersect, bo_Difference. If oType=bo_Union, then the method merges solid body and
a revolution body; if oType=bo_Intersect, then the method intersects solid body and a revolution body; if
oTlype=bo_Difference, then the method subtracts a revolution body from seolid body. names and snames
parameters provide naming of the faces for newly constructed body.

When a body is constructed by rotating curves, RevolutionResult method provides the same possibilities
as RevolutionSolid method: rotated curves may be located in a plane (Figure M.1.4.2), in a curved surface
(Figure M.1.4.9) or in space (Figure M.1.4.16); it may be rotated in forward direction, backward direction or
both directions; newly constructed body may completely fill closed curves (Figure M.1.4.10) or it may have
a thin wall (Figure M.1.4.11). We shall not repeat the description of all features of the method, we shall
rather focus on some features associated with Boolean operations.

In Fig. M.2.4.1, you can see solid body, generating curve included in sweptData data and axis rotation
axis.

sweptData.surface solid

sweptData.contours[0] "

a xb\.

In Fig. M.2.4.2, you can see the result of Boolean operation that merges solid body and a thin-walled
body received by rotation of sweptData curve around axis shown in Figure M.2.4.1.

Fig. M.2.4.1.
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params.sidel.way = sw_scalarValue

params.sidel.scalarValue params.side2.way = sw_scalarValue
params.sidel.scalarValue
rm
| T

params.thickness2
params.thickness1=0

sweptData.contours[0]

axb\
params.shellClosed = true oType =bo_Union

Fig. M.2.4.2.

In Fig. M.2.4.3, you can see the result of Boolean operation that merges solid body and a thin-walled
body received by rotation of sweptData curve around axis shown in Figure M.2.4.1. Generating curve is
rotated in backward direction with To Surface option (params.side2.way=sw_surface).
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params.sidel.way = sw scalarValue
params.sidel.scalarValue params.side2.way = sw_surface
params.side?.scalarValue

e T
\( \

\ I

]
params.thickness?

params.thickness1= 0

sweptData.contours[0]

axk

params.shellClosed = true params.side2.distance= ()

params.side2.surface

oType =bo Union
Fig. M.2.4.3.

In Fig. M.2.4.4, you can see the result of Boolean operation that subtracts a body received by rotating
sweptData generating curve around axis from solid body shown in Figure M.2.4.1.

111



params.sidel.way = sw_scalarValue
params.sidel.scalarValue params.side2.way = sw_scalarValue
params.side2.scalarValue

"‘*-u._\h‘_

params.thickness2 = ()
params.thicknessl =0

sweptData.contours[0]

" "-'_-'_'_‘_'_'_'_‘_
axl>\

params.shellClosed = true oType =bo_Difference
Fig. M.2.4.4.

In Fig. M.2.4.5, you can see the result of Boolean operation that subtracts a body received by rotating
sweptData generating curve around axis from solid body shown in Figure M.2.4.1. Generating curve is
rotated in backward direction with To Surface option (params.side2.way=sw_surface).
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params.sidel.way = sw_scalarValue
params.sidel.scalarValue params.side2. way = sw_surface

params.side?.scalarValue

m

.

o

.

™~

N

params.thickness2 = ()
params.thicknessl =0

sweptData.contours[0]

an>\

params.shellClosed = true params.side.distance= ()

params.side?.surface

oType = bo_Difference
Fig. M.2.4.5.

In Fig. M.2.4.6, you can see the result of Boolean operation that intersects solid body and a body received

by rotating sweptData generating curve around axis shown in Figure M.2.4.1.
params.sidel.way = sw_scalarValue

params.sidel.scalarValue params.side2.way = sw_scalarValue

params.side2.scalarValue

"_'_\_\_‘_‘-‘—-—\_
h‘_\-\_\_\_\_-\-
"N\_,_\\
-
\\
N,
\
\

!

\
params.thickness2 = () \
parvams.thickness1 =0

sweptData.contours[0]
I -

i\

params.shellClosed = true oType =bo_Intersection

Fig. M.2.4.6.
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In Fig. M.2.4.7, you can see the result of Boolean operation that intersects solid body and a body received
by rotating sweptData generating curve around axis shown in Figure M.2.4.1. Generating curve is rotated in
backward direction with To Surface option (params.side2.way=sw_surface).

params.sidel.way = sw_scalarValue

params.sidel.scalarValue params.side2. way = sw_surface
I params.side2.scalarValue
-
‘““m\

result \

N
params.thickness2 = 0
params.thicknessl =0
sweptData.contours[0]
ax;\_
params.shellClosed = true params.side2.surface
oType =bo_Intersection params.side.distance= 0

Fig. M.2.4.7.

RevolutionResult method adds MbRevolutionSolid constructor in the log of newly constructed body that
contains all data required to execute the operation. MbRevolutionSolid constructor is declared in
cr_revolution_solid file.

test.exe test application executes a Boolean operation on constructed body using New ->Body -> Attach
to Other Body -> Curve Rotation, New ->Body -> Cut from Other Body -> Curve Rotation, New ->Body ->
Intersection with Other Body -> Curve Rotation menu commands.

M.2.5. Boolean Operation on Swept Body

The method

MbResultType

EvolutionResult ( MbSolid & solid,
MbeCopyMode sameShell,
const MbSweptData & sweptData,
const MbCurve3D & spine,
EvolutionValues & params,
OperationType oTjpe,
const MbSNameMaker & names,
PArray<MbSNameMaker> & cnames,
const MbSNameMaker & snames,
MbSolid *& result )

constructs a swept body and executes a Boolean operation on newly given body with newly constructed
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body.
Input parameters of the method are as follows:

* solid is a body given for Boolean operation,

*  sameShell is copying version for the given body,

* sweptData contains data on generating curves for construction of extruded body,

e spine is guiding curve,

*  params are construction parameters,

*  oType is Boolean operation type: bo_Union means merging of the bodies,
bo_Intersect means intersection of the bodies,
bo_Difference means subtraction of the bodies,

* names is face namer,

* cnames are namers of swept body faces,

* snames is guiding line namer.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method executes successive merging of the following two methods: EvolutionSolid method that
constructs a body by moving sweptData curves along spine guiding curve using set params parameters and
BooleanSolid method that executes oType Bollean operation on solid body that was constructed in the
previous step. EvolutionSolid method is described in item M.1.5. Constructing a Swept B, and
BooleanSolid method is described in item M.2.1. Boolean Operation on. sameShell parameter controls
transfer of faces, edges and vertices from solid original body to result constructed body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item .0.7.9. Copying a Set of Faces

oType (OperationType) parameter defines Boolean operation type; it takes one of the following three
values: bo_Union, bo_Intersect, bo_Difference. If o7Type=bo_Union, then the method merges solid body and
the swept body; if oType=bo Intersect, then the method intersects solid body and the swept body; if
oType=bo_Difference, then the method subtracts the swept body from solid body. names, cnames and
snames parameters provide face naming for newly constructed body.

When EvolutionResult method constructs bodies by moving curves, it provides the same possibilities as
EvolutionSolid method: guiding curves may be located in a plane (Figure M.1.5.2), in a curved surface
(Figure M.1.5.8), or in space (Figure M.1.5.16); the body may completely fill closed curves (Figure M.1.5.9)
or it may have a thin wall (Figure M.1.5.10). We shall not repeat the description of all features of the method,
we shall rather focus on some features associated with Boolean operations.

In Fig. M.2.5.1, you can see solid body, a generating curve included in sweptData data and spine guiding
curve.
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sweptData.contours[0]

spine

sweptData.surface

solid

Fig. M.2.5.1.

In Fig. M.2.5.2, you can see the result of the Boolean operation that merges solid and the body received
by moving sweptData generating curve along spine guiding curve shown in Figure M.2.5.1.

params.shellClosed = true oType =bo Union

sweptData.contours[0]
o

py

#

params.thickness2 = ()
params.thicknessl =0

Fig. M.2.5.2.

In Fig. M.2.5.3, you can see the result of Boolean operation that subtracts the body received by moving
sweptData generating curve along spine guiding curve from solid body shown in Figure M.2.5.1.
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params.shellClosed = true oType =bo Difference

sweptData.contours[0]

spine
Vs

#

params.thickness2 =
params.thicknessl =0

Fig. M.2.5.3.

In Fig. M.2.5.4, you can see the result of Boolean operation that merges solid body and the body received
by moving sweptData generating curve along spine guiding curve shown in Figure M.2.5.1.

params.shellClosed = true oType =bo_Intersection

sweptData.contours[0]

spine
/

params.thickness2

params.thickness1 =0

Fig. M.2.5.4.

EvolutionResult method adds MbEvolutionSolid constructor to the log of newly constructed body that
contains all data required to execute the operation. MbEvolutionSolid constructor is declared in

cr_evolution_solid.h file.

test.exe test application executes Boolean operations on constructed swept body using New ->Body ->
Attach to Other Body -> By Moving Curve, New ->Body -> Cut from Other Body -> By Moving a Curve,
New ->Body -> By Intersection with Other Body -> By Moving a Curve menu commands.

M.2.6. Boolean Operation with a Body Constructed on Base of Flat Sections

The method

117



MbResultType

LoftedResult ( MbSolid & solid,
MbeCopyMode sameShell,
SArray<MbPlacement3D> & places,
RPArray<MbContour> & contours,
const MbCurve3D * spine,
LoftedValues & params,
OperationType oType,
Sarray<MbCartPoint3D> * points,
const MbSNameMaker & names,
PArray<MbSNameMaker> & snames,
MbSolid *& result )

constructs a body based on flat sections and executes Boolean operation on the specified body with newly

constructed body.

Input parameters of the method are as follows:

* solid is a body given for Boolean operation,

*  sameShell is copying version for the given body,

* places is a set of local coordinate systems for generating contours,

* contours is a set of generating contours,

e spine is a guiding curve (it may be missing),

*  params are construction parameters,

*  oType is Boolean operation type: bo_Union means merging of the bodies,
bo_Intersect means intersection of the bodies,
bo_Difference means subtraction of the bodies,

* points is a set of control points (it may be missing),

* names is face namer,

* snames are namers of generating contours.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method executes successive merging of the following two methods: LoftedSolid method that
constructs a body based on contours flat sections at places planes taking into account params parameters
and BooleanSolid method that executes oType Boolean operation of solid body that was constructed in the
previous step. LoftedSolid method is described in item M.1.6. Constructing a Body by Flat Sections, and
BooleanSolid method is described in item M.2.1. Boolean Operation on. sameShell parameter controls
transfer of faces, edges and vertices from solid original body to result constructed body:.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

oType (OperationType) parameter defines Boolean operation type; it takes one of the following three
values: bo_Union, bo_Intersect, bo_Difference. If oType=bo_Union then the method merges solid body and
the swept body; if oType=bo Intersect, then the method intersects solid body and the swept body; if
oTlype=bo_Difference, then the method subtracts the swept body from solid body. names, cnames and
snames parameters provide face naming for newly constructed body.

When LoftedResult method constructs bodies based on flat sections, it provides the same possibilities as
LoftedSolid method: constructed body may be built as non-closed (Figure M.1.6.3) or as closed one
(Figure M.1.6.4); the body may have various shapes near the ends (Figure M.1.6.5 and Figure M.1.6.6); the
body may completely fill the closed curves (Figure M.1.6.3) or it may have a thin wall (Figure M.1.6.6);
body shape in sections can be controlled by a guiding line (Figure M.1.6.15 and Figure M.1.6.16). We shall
not repeat the description of all features of the method, we shall rather focus on some features associated
with Boolean operations.

In Fig. M.2.6.1, you can see solid body and closed guiding curves.
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places[1]
contours[1]

places[0]
contours[0]

Fig. M.2.6.1.

In Fig. M.2.6.2, you can see the result of Boolean operation that merges solid body and the body that was
constructed based on contours flat sections shown in Figure M.2.6.1.

params.shellClosed = true oType =bo_Union
params.closed = false

params.vector]l =0
params.vector2 =0

places|1]
contours[1]

places[0]

contours[0
params.thicknessl =0 (0]

params.thickness2 =0

Fig. M.2.6.2.

In Fig. M.2.6.3, you can see the result of Boolean operation that subtracts the body that was constructed
based on contours flat sections from solid body shown in Figure M.2.6.1.
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params.shellClosed = true oTyvpe =bo_Difference

places[1] params.closed = false

contours[1] params.vectorl =0

params.vector2 =0

places[0]
contours[0]

params.thiciness1 =0
params.thickness2 = 0

Fig. M.2.6.3.

In Fig. M.2.6.4, you can see the result of the Boolean operation that merges solid body and the body that
was constructed based on contours flat sections shown in Figure M.2.6.1.

params.shellClosed = true oType =bo_Intersection

params.closed = false

places[1]
contours[1]

params.vectorl =0
params.vector2 =0

places[0]
contours[0]

params.thicknessl =0
params.thickness2

Fig. M.2.6.4.
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LoftedResult method adds MbLoftedSolid constructor in the log of newly constructed body that contains
all data required to execute the operation. MbLoftedSolid constructor is declared in cr_lofted solid.h file.

test.exe test application executes a Boolean operation with the body constructed based on flat sections
using New ->Body -> Attach to Other Body -> By Sections, New ->Body -> Attach to Other Body -> By
Sections and Generating Curve, New ->Body -> Cut from Other Body -> By Sections, New ->Body -> Cut
from Other Body -> By Sections and Generating Curve, New ->Body -> Intersection with Other Body -> By
Sections, New ->Body -> Intersection with Other Body -> By Sections menu commands.

M.2.7. Cutting a Body by a Surface

The method
MbResultType
SolidCutting ( MbSolid & solid,

MbeCopyMode sameShell,
const MbSurface & surface,
int part,
const MbSNameMaker & names,
bool closed,
MbSolid *& result )
cuts off part of the body by a surface that intersects it.
Input parameters of the method are as follows:
* solid is the original body,
* sameShell is a version of original body copying method,
» surface is the intersecting surface,
* partis a part of the body that should be kept:
if part = +1 then the part of the body above the surface should be kept,
if part = 0 then all parts of the body should be kept,
if part = —1 then the part of the body under the surface should be kept,
* names is cut face namer,
* closed is a flag indicating whether the body is closed in the operation:
true means that the body is considered to be closed,
false means that the body is considered to be non-closed.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

The method constructs a non-closed shell with one face based on cutting surface and it executes a
Boolean operation that intersects solid original body with a non-closed shell. To execute the operation, the
cutting surface should fully intersect the original body. sameShell parameter controls transfer of faces, edges
and vertices from solid original body to result constructed body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

part parameter defines the part of solid original body to be kept: if part=+1, then the part located above
the surface will be kept (on the other side, which is directed normal to the surface); if part=1, then the part
located under the surface will be kept; if part=0, then the both parts of the body will be kept. names
parameter is used to name the faces of the constructed body. closed parameter defines whether solid original
body is closed or non-closed.

If closed=true, then the operation is executed on a set of points inside the body and on its surface. If
closed=false, then the operation is executed on a set of points located on body surface.

In Fig. M.2.7.1, you can see solid original body and cutting surface.

121



solid

surface

normal

Fig. M.2.7.1.

In Fig. M.2.7.2, you can see result constructed body if part=+1 and closed=true. In Fig. M.2.7.3, you can
see result constructed body if part=1 and closed=true.

result result

part = +1 closed =true

part=—1 closed = true

Fig M.2.7.2. Fig. M.2.7.3.
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In Fig. M.2.7.4, you can see result constructed body if part=+1 and closed=false.

result

part =+1 closed = false

Fig. M.2.7.4.

If part=0, then method constructs result body which contains all cutted parts of initial body. Method
DetachParts or CreateParts can to detach part of result body. Methods DetachParts and CreateParts are
described in item M.2.19. Divide a Body to Disconnected Parts

Method
MbResultType
SolidCutting ( MbSolid & solid,
MbeCopyMode sameShell,
const MbSurface & surface,
const MbSNameMaker & names,
bool closed,
RPArray<MbSolid> & result)
constructs all parts of initial body if par=0.
Method has the same parameters besides part. In Fig. M.2.7.5, you can see result constructed bodies if
closed=true.
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result

part =0 closed = true

Fig. M.2.7.5.

SolidCutting methods adds MbCuttingSolid constructor in the log of newly constructed body that
contains all data required to execute the operation. MbCuttingSolid constructor is declared in
cr_cutting_solid.h file.

test.exe test application cuts body with a surface using New ->Body -> Based on Body -> Cut with
Surface and New -> Shell -> Based on Shell -> Cut with Surface menu commands.

M.2.8. Cutting a Body by a Flat Contour

The method
MbResultType
SolidCutting ( MbSolid & solid,
MbeCopyMode sameShell,
const MbPlacement3D & place,
const MbContour & contour,
const MbVector3D & direction,
int part,
const MbSNameMaker & names,
bool closed,
MbSolid *& result )
cuts off a part of a body (constructed by extruding a flat contour) by a surface that intersects the body.
Input parameters of the method are as follows:
* solid is the original body,
* sameShell is a version of original body copying method,
* place is a local coordinate system of generating contour,
* contour is the generating contour,
» direction is extrusion direction of the generating contour,
* part is a part of the body that should be kept:
if part = +1, then the part of the body above the surface should be kept,
if part = 0, then all parts of the body should be kept,
if part =—1, then the part of the body under the surface should be kept,
* names is cut face namer,
* closed is a flag indicating whether the body is closed in the operation:
true means that the body is considered to be closed,

124



false means that the body is considered to be non-closed.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method constructs a non-closed shell by extruding two-dimensional contour in direction of XY
plane of place local coordinate system, and executes Boolean operation that intersects solid original body
with non-closed shell. If direction vector is equal to zero, then the contour is extruded along place.axisZ
vector. To execute the operation, the cutting contour should fully intersect with the projection of the original
body in XY plane in place local coordinate system in the direction of extrusion vector. Contour extrusion
length is calculated so that non-closed shell would fully intersect the original body. sameShell parameter
controls transfer of faces, edges and vertices from solid original body to result constructed body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item0.7.9. Copying a Set of Faces.

part parameter defines the part of solid original body to be kept: If part=+1, then the part of the body to
the right of the contour is to be kept; if part=—1, then the part of the body to the left of the contour is to be
kept (as viewed along the contour towards place.axisZ). names parameter is used to name the faces of the
constructed body. closed parameter defines whether solid original body is closed or non-closed.

If closed=true, then the operation is executed on a set of points inside the body and on its surface. If
closed=false, then the operation is executed on a set of points located on body surface.

In Fig. M.2.8.1, you can see solid original body, contour cutting contour and XY plane of place local
coordinate system.

place direction

contour

solid

Fig. M.2.8.1.

In Fig. M.2.8.2, you can see result constructed body when part=+1 and closed=true. In Fig. M.2.8.3, you
can see result constructed body, when part=1 and closed=true.
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result
result

part = closed =true
part=—1 closed =true

Fig. M.2.8.2. Fig. M.2.8.3.

In Fig. M.2.8.4, you can see result constructed body, when part=+1 and closed=false.

’/—-————_\

result

part=+1 closed = Tfalse

Fig. M.2.8.4.

If part = 0, then method constructs result body which contains all cutted parts of initial body. Method
DetachParts or CreateParts can to detach part of result body. Methods DetachParts and CreateParts are
described in item M.2.19. Divide a Body to Disconnected Parts.

Method
MbResultType
SolidCutting ( MbSolid & solid,
MbeCopyMode sameShell,
const MbPlacement3D & place,
const MbContour & contour,
const MbVector3D & direction,
const MbSNameMaker & names,
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bool closed,

RPArray<MbSolid> & result )

constructs all parts of initial body if part=0. Method has the same parameters besides part. In Fig. M.2.8.5,
you can see result constructed bodies if closed=true.

/’\

result

part =) closed = true

Fig. M.2.8.5.

SolidCutting methods adds MbCuttingSolid constructor in the log of newly constructed body that
contains all data required to execute the operation. MbCuttingSolid constructor is declared in
cr_cutting_solid.h file.

test.exe test application cuts a body with a surface using New ->Body -> Based on Body -> Cut with
Curve and New -> Shell -> Based on Shell -> Cut with Curve menu commands.

M.2.9. Constructing a Symmetrical Body

The method
MbResultType
SymmetrySolid ( MbSolid & solid,
MbeCopyMode sameShell,
const MbPlacement3D & place,
const MbSNameMaker & names,
MbSolid *& result )
constructs a symmetrical body with a given symmetry plane.
Input parameters of the method are as follows:
e solid is the original body,
*  sameShell is a version of original body copying method,
* place is a local coordinate system, its XY plane is a symmetry plane,
* names is cut face namer.
Method output parameter is result constructed body.
If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.
The method is declared in action_solid.h file.
The method constructs a symmetrical body with a specified symmetry plane as follows. solid original
body is cut by XY plane of place local coordinate system; the part of the original body located below the
cutting plane is taken; a mirrored copy of the selected part of the original body is constructed and merged
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with the selected part of the original body. sameShell parameter controls transfer of faces, edges and vertices
from solid original body to result constructed body.
sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.
In Fig. M.2.9.1, you can see solid original body and place symmetry plane.

place

Fig. M.2.9.1.
In Fig. M.2.9.2, you can see result constructed body.

Mace

result

Fig. M.2.9.2.

In Fig. M.2.9.3, you can see result body constructed for symmetry plane with an opposite normal.
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place

result

Fig. M.2.9.3.

If solid original body does not touch XY plane of place local coordinate system, then the construction is
not executed. In the latter case you can use MirrorSolid method to construct a symmetrical body.

SymmetrySolid method adds MbSymmetrySolid constructor in the log of newly constructed body that
contains all data required to execute the operation. MbSymmetrySolid constructor is declared in
cr_symmetry solid.h file.

test.exe test application constructs a symmetrical body using New ->Body -> Based on Body ->
Symmetrical menu command.

M.2.10. Rounding-off Body Edges

The method
MbResultType
FilletSolid ( MbSolid & solid,

MbeCopyMode sameShell,
RPArray<MbCurveEdge> & edges,
RPArray<MbFace> & bounds,
const SmoothValues & params,
const MbSNameMaker & names,
MbSolid *& result )
rounds off specified edges in a copy of the original body.
Input parameters of the method are as follows:

* solid is the original body,

*  sameShell is a version of original body copying method,

* edges is a set of rounded-off edges.

* bounds is a set of faces used to cut rounded-off edges (the set may be empty),

*  params are construction parameters,

* names is a namer of constructed faces.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method replaces specified edges of the original body with rounded-off faces in order to ensure
smooth mating of adjacent faces of specified edges. When edges are rounded-off, the mating faces may have
a shape of circle arc, ellipse, hyperbola or parabola in a cross-section.

solid parameter contains the original body, its edges should be processed. sameShell parameter controls
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transfer of faces, edges and vertices from solid original body to result resulting body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

edges parameter contains processed edges of solid body. bounds parameter contains faces of solid body
that should be used to trim rounding-off in an ambiguous situation. names parameter provides naming of
mating faces.

params rounding-off parameters contain data on the form and mating method of adjacent faces of
processed edges, please see Figure M.2.10.1. SmoothValues class is described in shell parameter.h file.

[ SmoothValues j

double distancel
double distance?
double conic
double beglength

double endLength

MbSmoothForm form = { st Span,
st_Fillet,
st_Chamfer,
st_Slantl,
st_Slant2 }

CorneForm smoothCorner = { ec_pointer,
ec_either,
ec_uniform,
ec_sharp }

bool prolong

bool autoSurface
bool keepCant

bool strict

bool equable
MbVector3D vectorl

MbVector3D vector2

Fig. M.2.10.1.

params input parameter contains the following data:

* distancel is the first rounding-off radius,

* distance? is the second rounding-off radius,

* conic is a shape coefficient of the mating surface,

* beglength is the distance from the starting vertex to mating end point (a negative value means that
end point is missing),

* endLength is the distance from end vertex to mating end point (a negative value means that the end
point is missing),

* form is mating type from an enumeration MbeSmoothForm,

*  smoothCorner is rounding-off method for suitcase corners,

* prolong is a flag indicating that rounding-off is continued at tangent edges,

* autoSurface is a flag for automatic edge-keeping determination,

*  keepCant is a flag for edge keeping,

* strict is construction "strictness" flag: if it is equal to false, then try to round-off everything that is
possible,

* equable is a flag for insertion of a toroidal surface at joining corners of a mating surface,

* vectorl is a vector of normal to the mating end plane in the beginning,

» created vector?2 is a vector of normal to the mating end plane in the end.
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form parameter defines rounding-off type. If form is equal to st Fillet or st Span, then the edges are
rounded-off; any other value of form is not used by this method. If form=st_Fillet, then the method constructs
a rounding-off surface with predetermined radii that define distancel and distance2 parameters. In
Fig. M.2.10.2, you can see a rounding-off with specified edge radii; this edge joins two cylindrical surfaces.

params.form = st_Fillet

distancel = distance?

params.conic =0 params.distancel

params.distance

Fig. M.2.10.2.

If distancel=distance2 and conic=0, then the rounding-off surface is constructed by moving a sphere that
touches two adjacent faces of rounded-off edge. Reference edges of mating faces are located at contact
points of the sphere and corresponding adjacent face. A cross-section of mating face is a circular arc. In
Fig. M.2.10.3, you can see a fillet with specified equal edge radii; this edge joins two cylindrical surfaces.

params. form = st_Fillet

distancel = distance?

params.conic =0 params. distancel

params.distance2

Fig. M.2.10.3.

conic coefficient defines the shape of rounding-off surface. If conic=0 (_ARC_ macros), then the section
of the mating surface is a circular arc or an ellipse with predetermined radii. Shape coefficient can be equal
to zero or it can range from 0.05 to 0.95. If conic=0.5, then rounding-off face cross-section is a parabolic arc.
If conic>0.5, then rounding-off face cross-section is a hyperbolic arc. If conic<0.5, then rounding-off face
cross-section is an elliptical arc. In Fig. M.2.10.4 and M.2.10.5, you can see rounding-offs with equal radii of
the edge joining two cylindrical surfaces with different shape coefficients.

131



params.form = st_Fillet

distancel = distance?
params.conic = 0.8 params.distancel

params.distance

Fig. M.2.10.4.

arams. form = st Fillet i .
P J ~ distancel = distance?

params.conic = 0.2 params. distancel

params.distance?2

Fig. M.2.10.5.

If form=st_Span, then the method constructs a rounding-off surface with a specified chord. distancel and
distance2 are equal, they determine the distance between the reference edges of the mating face. Rounding-
off face cross-section is a circular arc. In general case, arc radii are different in every rounding-off face cross-
section and distancel and distance2 parameters are equal to the chord of the circular arc. In Fig. M.2.10.6,
you can see a rounding-off with specified edge chord; the edge joins two cylindrical surfaces.
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params.form = st_Span

params.conic =0

params.distancel =
= params.distancel

Fig. M.2.10.6.

In Fig. M.2.10.6, you can see a rounding-off with specified edge chord having non-zero shape coefficient;
the edge joins two cylindrical surfaces.

params.form = st_Span

params.conic =09

params.distancel =
= params. distance?

Fig. M.2.10.7.

In Fig. M.2.10.8, you can see an example of rounding-off stop located beglength away from start vertex
and endLength away from end vertex. If there is no need to stop mating, then beglength and endLength
should take negative values. By default, the stop of the fillet edges is perpendicular to the fillet edge. You can
override the behavior stops fillets using vector vectorl as the normal stopping faces at the beginning of the
pairing and the vector vector2 as the normal stopping faces at the end of the pairing.
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params. form = st_Fillet params. conic =0

params.distancel = params.distance2

params.begLength

params.endLength

Fig. M.2.10.8.

Let's look at the body shown in Figure M.2.10.9 as an example and demonstrate how to use prolong,
autoSurface and keepCant flags when an edge highlighted in Figure M.2.10.9 is rounded-off.

edges

Fig. M.2.10.9.

prolong flag determines what edges should be processed. If prolong=false, then only edges from edges
container should be processed (Figure M.2.10.10).
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params. form = st_Fillet

params.prolong = false

Fig. M.2.10.10.

if prolong=true, then edges from edges container should be processed, as well as the edges smoothly
joined with them (Figure M.2.10.11).

params. form = st_Fillet

params.prolong = true
params.autoSurface = false

params.keepCant = false

Fig. M.2.10.11.

autoSurface and keepCant flags are used to handle situations when reference edges of the face fall beyond
the adjacent face. If autoSurface=false and keepCant=false, then in situations when reference edges of the
face go beyond an adjacent face with an acute edge, the mating face keeps its original shape and it is cut off
by the adjacent face, see Figure M.2.10.11. If autoSurface=true or keepCant=true, then in situations when
face reference edge goes beyond the adjacent face with an acute edge, the mating face changes its shape and
goes by its reference edge along the boundary, keeping it unchanged as shown in Figure M.2.10.12.
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params. form = st_Fillet

params. prolong = true
params.autoSurface = true

params. keepCant = true

Fig. M.2.10.12.

If autoSurface=true and keepCant=false, then if reference edges of the mating face go beyond the
adjacent face via a smooth edge, then the mating face replaces the adjacent face with its neighbor and
changes its shape in this section as shown in Figure M.2.10.13.

params. form = st_Fillet

params. prolong = true
params.autoSurface = true

params.keepCant = false

Fig. M.2.10.13.

In Fig. M.2.10.14, you can see rounding-off of four edges created by a single call of this method with
equable=false flag.
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params.form = st_Fillet

params.equable = false

Fig M.2.10.14.

In Fig. M.2.10.15, you can see rounding-off of four edges created by a single call of this method with
equable=true; this flag indicates the need to insert toroidal surfaces at the joining corners of mating surfaces.

params. form = st_Fillet

params.equable = true

Fig. M.2.10.15.

If three edges mating in a single vertex are rounded-off, then smoothCorner determines suitcase corners
rounding-off processing method. If smoothCorner=ec_pointed, then the corners where three edges with the
same convexity are mating are not processed, see Figure M.2.10.16.
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params. form = st_Fillet

params.smoothCorner = ec_pointed
Fig. M.2.10.16.

If smoothCorner=ec_uniform, then corners that join three edges with different convexities are processed
using the same method as shown in Figure M.2.10.17.

params. form = st_Fillet

params.smoothCorner = ec_uniform

Fig. M.2.10.17.

If smoothCorner=ec_sharp, then corners that join three edges with different convexity are processed
using the same method as shown in Figure M.2.10.18.
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params.form = st _Fillet

params.smoothCorner = ec_sharp

Fig M.2.10.18

If smoothCorner=ec_either, then the corners that join three edges with different convexities may be
processed using different methods.

In an ambiguous situation bounds parameter contains faces of solid body that should be used to trim
rounding-off faces. An example of using bounds parameter is given in Figures M.2.10.19 and M.2.10.20.

params, form = st_Fillet

‘bounds

Fig. M.2.10.19
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params.form = st_Fillet

bounds

Fig. M.2.10.20

bounds parameter may be used to stop mating faces in the beginning and in the end. In this case, the
edges defined by bounds parameter should belong to selid original body.

In Fig. M.2.10.21, you can see a model, for which edge rounding-offs that completely cover the hole and
the protrusion should be constructed.

edges

Fig M.2.10.21
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A rounding-off with avoidance of obstacles is shown in Figure M.2.10.22.

Fig. M.2.10.22

In Fig. M.2.10.23, you can see simultaneous rounding-off of six edges having a common vertex.

Fig. M.2.10.23

In Fig. M.2.10.24 you can see simultaneous rounding-off of several groups of four edges with common
vertices. Rounding-off feature is that the groups are linked with each other and can be processed
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simultaneously only. Original body for the body shown in Figure M.2.10.24 was constructed by subtracting
four cylinders with axes coinciding with cube diagonals from a cube.

Fig. M.2.10.24

If rounding-off based on edges is constructed, then the method adds MbFilletSolid constructor in the log
of newly constructed body. The constructor is declared in cr_fillet solid.h file.

test.exe test application processes the edges of the body using New ->Body -> By Processing Edges ->
Round-off by Radius and New ->Body -> By Processing Edges -> Round-off by Chord menu commands.

When in rounding methods, the parameters distancel and distance2 are not equal and several edges are
specified for processing, it is difficult to understand what corresponds to what. In this situation, it is
suggested to use auxiliary methods: SmoothPhantom(...), SmoothSequence(...), SmoothPositionData(...),
declared in the file action phantom.h. The SmoothPhantom(...) method builds simplified surfaces to
simulate future fillets. The SmoothSequence(...) method builds a series of edges to which, if desired,
smoothly joining edges that can be processed together can be added. The SmoothPositionData(...) method
calculates three points for the processed edges that are used for the phantom dimensions of the radii, legs,
and corners of the operation. Usually, with the help of these methods, a phantom is drawn to understand what
will happen as a result of the operation, and it is possible to change the parameters if necessary.

Before the construction of fillets processed edges are sorted, if necessary, or at the request added to
them smoothly mating edges and of the edges are smooth sequence abutting edges. distancel and distance2
parameters attached to the first and second surfaces, respectively, of the MbSurfacelntersectionCurve curve
of the first edge in the sequence of smoothly mating edges. Surfaces can be obtained intersection curve
methods GetCurveOneSurface() and GetCurveTwoSurface(). According distancel and distance2 first
edge defined parameters for the other edges of each sequence. So, if the first edge pointer edge-
>GetIntersectionCurve().GetSurfaceOne() is a pointer &edge->GetFacePlus()-
>GetSurface().GetSurface(), then distancel will correspond to the radius to the face facePlus, and
distance?2 will correspond to the radius to the face faceMinus of the first edge of sequence.
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M.2.11. Rounding-off Edges of the Body Using Variable Radius

The method
MbResultType
FilletSolid ( MbSolid & solid,

MbeCopyMode sameShell,
SArray<MbEdgeFunction> & edges,
RPArray<MbFace> & bounds,
const SmoothValues & params,
const MbSNameMaker & names,
MbSolid *& result )
rounds-off specified edges in a copy of original body using a variable radius.
Input parameters of the method are as follows:
* solid is the original body,
*  sameShell is a version of original body copying method,
* edges is the set of rounding-off edges with specified radius change methods.
* bounds is a set of faces used to cut rounded-off edges (the set may be empty),
*  params are construction parameters,
* names is a namer of constructed faces.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method replaces specified edges of the original body with rounded-off faces in order to ensure
smooth mating of adjacent faces of specified edges. When the edges are rounded-off, the mating faces may
have the shape of a circular arc with variable radius. The method is similar to the method described in the
preceding item, the difference is the third parameter: edges.

solid parameter contains the original body, its edges should be processed. sameShell parameter controls
transfer of faces, edges and vertices from solid original body to result resulting body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

bounds parameter contains faces of solid body that should be used to trim rounding-off in an ambiguous
situation. names parameter provides naming of mating faces.

params rounding-off parameters contain data on the form and mating method of adjacent faces of
processed edges, please see Figure M.2.10.1. SmoothValues class is described in shell parameter.h file.
params input parameter contains the following data:

» distancel is the first rounding-off radius,

* distance? is the second rounding-off radius,

* conic is a shape coefficient of the mating surface,

* beglength is the distance from the starting vertex to mating end point (a negative value means that
end point is missing),

* endLength is the distance from end vertex to mating end point (a negative value means that the end
point is missing),

* form is mating type from an enumeration MbeSmoothForm,

*  smoothCorner is rounding-off method for suitcase corners,

* prolong is a flag indicating that rounding-off is continued at tangent edges,

* autoSurface is a flag for automatic edge-keeping determination,

*  keepCant is a flag for edge keeping,

* strict is construction "strictness" flag: if it is equal to false, then try to round-off everything that is
possible,

* equable is a flag for insertion of a toroidal surface at joining corners of a mating surface,
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* vectorl is a vector of normal to the mating end plane in the beginning,
» created vector?2 is a vector of normal to the mating end plane in the end.
edges parameter contains processed edges of solid body and the function of radius change along the edge.
Each element of edges set consists of a pointer to an edge and a pointer to a scalar function, its values should

be multiplied by the first and second rounding-off radii (distancel and distance2), see shown Figure
M.2.11.1.

E MbEdgeFunction j

MbCurveEdge * edge
MbFunction * function

Fig. M.2.11.1.

form parameter defines rounding-off type. If form parameter is equal to st Fillet or st Span, then the
edges of variable radius are rounded-off; any other values of form are not used by the method. For each
point of processed edges[i].edge->Point(z,point), curvature radii of rounding-off surface are equal to
distancel and distance?2 parameters multiplied by edges[i].function->Value(¢) function value. In Fig.
M.2.11.2, you can see a rounding-off with variable radii of rectangular prism edge. If distancel=distance2
and conic=0, then rounding-off surface is constructed by moving the sphere of variable radius that touches
two adjacent faces of the rounded-off edge. Reference edges of mating faces are located at contact points of
the sphere and corresponding adjacent face. A cross-section of mating face is a circular arc.

params.form = st_Fillet distancel = distance?

params.conic =0

params.distancel* function

params.distance2* function

function
edges[0].function
0 edge length 1

Fig. M.2.11.2.

In Fig. M.2.11.3, you can see an elliptical rounding-off with variable radii for rectangular prism edge.
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params. form = st_Fillet distancel < distance?

params.conic = 0

params.distancel * function

function params.distance2* function

edges[0].function

0 edge length 1

Fig. M.2.11.3.

conic coefficient defines the shape of rounding-off surface. If conic=0 (_ARC_ macros), then the section
of the mating surface is a circular arc or an ellipse with predetermined radii. Shape coefficient can be equal
to zero or it can range from 0.05 to 0.95. If conic=0.5, then rounding-off face cross-section is a parabolic arc.
If conic>0.5, then rounding-off face cross-section is a hyperbolic arc. If conic<0.5, then rounding-off face
cross-section is an elliptical arc. In Fig. M.2.11.4 and M.2.11.5, you can see rounding-off with variable radii
for rectangular prism edge with various form factors.
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params.form = st_Fillet distancel < distance?

params.conic =0.7 params.distance]* function

params.distance2* function |

edges[0] -functM

0 edge length 1

function

Fig. M.2.11.4.

params. form = st_Fillet distancel < distancel

params.conic =02 _ .
params.disiancel* function

params.distance2® function

function

edges[0].function

0 edge length 1

Fig. M.2.11.5.

146



In Fig. M.2.10.6, you can see rounding-off stopping points located beglLength away from start vertex and
endLength away from end vertex. When settings of stop rounding-off are configured, the method used to
change curvature radii is set for the whole edge. If there is no need to stop mating, then beglength and
endLength should take negative values.

params. form = st_Fillet
params. conic =)

params.distancel = params.distance2

params.begLength

params.endLength

function
edges[0].function
0 edge length 1

Fig. M.2.11.6.

prolong flag determines what edges should be processed. If prolong=false, then only edges from edges
container should be processed. If prolong=true, then edges from edges container should be processed, as well
as edges smoothly joined with them. In order to continue rounding-off edges, radius changing method takes
a constant value equal to function value at the edge of the previous smoothly jointed edges. In Fig. M.2.11.7,
you can see the original body, edges that should be rounded-off, and radius change method for specified

edges.
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HL\ edges[0].edge

function

edges[(].function

0 edge length 1

Fig. M.2.11.7.

In Fig. M.2.11.8, you can see the result of operation for the method for the original body and the method
used to change the radius of edges shown in Figure M.2.11.7. In Fig. M.2.11.8, you can see that at the edges,
radius changing method was picked up to ensure smooth matching with adjacent rounding-oft edge.

params.form = st_Fillet params.distancel = params.distance2

params.conic =0

params.prolong = true

Fig. M.2.11.8.

autoSurface, keepCant and equable flags are not used in the method.

If three edges mating in a single vertex are rounded-off, then smoothCorner determines suitcase corners
rounding-off processing method. If smoothCorner=ec_pointed, then the corners where three edges with the
same convexity are mating are not processed, see Figure M.2.10.16. If smoothCorner=ec_uniform, then
corners that join three edges with different convexities are processed using the same method as shown in
Figure M.2.10.17. If smoothCorner=ec_sharp, then corners that join three edges with different convexity are
processed using the same method as shown in Figure M.2.10.18. If smoothCorner=ec_either, then the
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corners that join three edges with different convexities may be processed using different methods. If the
functions used to change curvature radius at the edges of rounding-off faces do not coincide, then these
functions are modified to ensure smooth mating of rounding-off faces.

In an ambiguous situation bounds parameter contains faces of solid body that should be used to trim
rounding-off faces. An example of using bounds parameter is given in Figures M.1.20.19 and M.1.20.20.

bounds parameter may be used to stop mating faces in the beginning and in the end. In this case, the
edges defined by bounds parameter should belong to solid original body.

If rounding-off based on edges is constructed, then the method adds MbFilletSolid constructor in the log
of newly constructed body. The constructor is declared in cr_fillet solid.h file.

test.exe test application processes the edges of the body using New ->Body -> By Processing Edges ->
Variable Rounding-off menu command.

M.2.12. Constructing a Body with Edge Chamfers

The method
MbResultType
ChamferSolid ( MbSolid & solid,

MbeCopyMode sameShell,
RPArray<MbCurveEdge> & edges,
const SmoothValues & params,
const MbSNameMaker & names,
MbSolid *& result)
constructs chamfers at specified edges in a copy of the original body.
Input parameters of the method are as follows:

* solid is the original body,

» sameShell is original body copying option,

* edges is a set of rounded-off edges,

*  params are construction parameters,

* names is a namer of constructed faces.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

This method replaces the specified edges of the original body with chamfer faces.

The method is declared in action_solid.h file.

The method replaces specified edges of the original body with chamfer faces.

solid parameter contains the original body, its edges should be processed. sameShell parameter controls
transfer of faces, edges and vertices from solid original body to result resulting body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

edges parameter contains processed edges of solid body. names parameter provides naming of chamfer
faces.

To construct edge chamfers and fillets the same SmoothValues and params parameters are used,
see Figure M.1.20.1. SmoothValues class is described in shell parameter.h file. params parameters used to
create a chamfer contain data on the form and mating method for adjacent faces of processed edges.
The following data from params parameter are used to construct chamfers:

e distancel is the first chamfer side,

e distance? is the second chamfer side,

*  beglength is the distance from the starting vertex to mating end point (a negative value means that
end point is missing),

* endLength is the distance from end vertex to mating end point (a negative value means that the end
point is missing),

* form is mating type from an enumeration MbeSmoothForm,

*  smoothCorner is rounding-off method for suitcase corners,

* prolong is a flag indicating that rounding-off is continued at tangent edges,
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* vectorl is a vector of normal to the mating end plane in the beginning,
* vector2 is a vector of normal to the mating end plane at the end.
conic, autoSurface, keepCant, strict, and equable values are not used to construct a chamfer.
form parameter controls the method that is used to describe the chamfer. Values of the form parameter
equal to st Chamfer, st Slantl and st Slant2 are used to construct edge chamfers. If form=st Fillet, then the
method constructs chamfer surface with predetermined sides that define distancel and distance2 parameters.
M.2.12.1.

params. form = st_Chamfer

params.distancel

params.distancel | _~

Fig. M.2.12.1.

If form=st_Slantl, then the method constructs a chamfer face for the specified leg and its adjacent angle.
The leg defines distancel parameter, and distance2 corresponds to the leg belonging to the adjacent angle;
see Figure M.2.12.2.

params. form = st_Slantl

params.angle2

P

params.distancel

Fig. M.2.12.2.

If form=st_Slant2, then the method constructs a chamfer surface with specified angle and adjoining side.
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distancel corresponds to the side providing the specified angle, and distance2 parameter defines the
adjoining side, see Figure M.2.12.3.

params. form = st_Slant2

params. distance2

params.anglel

Fig. M.2.12.3.

In Fig. M.2.12.4, you can see chamfer stopping example with stopping points beglength away from start
vertex and endLength away from the end vertex of the processed edge. If there is no need to stop mating,
then begLength and endLength should take negative values.

params. distance params. form = st Chamfer

—

o

params.begLength

params.distarncel

params.endLength

Fig. M.2.12.4.

Let's take the body shown at Figure M.2.12.5 as an example to demonstrate how to use prolong flag to
construct a chamfer for the edge highlighted in Figure M.2.12.5.
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.edges N :

Fig. M.2.12.5.

prolong flag determines what edges should be processed. If prolong=false, then only the edges from
edges container should be processed, see Figure M.2.12.6.

params. form = st_Chamfer

params. prolong = false

params. distance2

params. distancel

Fig. M.2.12.6.

If prolong=true, then edges specified in edges container should to be processed, as well as edges
smoothly joined with them, see Figure M.2.12.7.
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-

params. form = st_Chamfer

params. distancel

params.prolong = true

params. distance2

Fig. M.2.12.7.

When chamfers of three edges mating in a single vertex are constructed, smoothCorner parameter defines
the method used to process suitcase corners. Let's take as an example the body shown in Figure M.2.12.8 and
show how to use smoothCorner parameter to construct chamfers at all edges of the body.

Fig. M.2.12.8.

If smoothCorner=ec_pointed, then corners that join three edges of the same convex are not processed,
and constructed body has a point where three faces with the same chamfer meet, see Figure M.2.12.9.
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- params. distancel

params. form = st_Chamfer

| params.distance?

params. smoothCorner = ec_pointed

Fig. M.2.12.9.

If smoothCorner parameter has any other value, then corners where three edges meet are processed by
constructing an additional face as shown in Figure M.2.12.10.

params. distancel

params. form = st_Chamfer

" params. distance2
params.smoothCorner = ec_uniform

Fig. M.2.12.10.

Let's take a pyramidal body shown in Figure M.2.12.11 as an example and show how to use this method
to construct chamfers in particular cases. Result of body construction for symmetrical configuration of edges
and symmetrical chamfer is shown in Figure M.2.12.12.
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Fig M2.12.11. Fig M.2.12.12.

It should be noted that if you construct a chamfer for four or more edges that meet in a single vertex, all
edge surfaces should intersect in a single point. An example of symmetrical chamfer for seven edges that
meet in a single vertex is shown in Figure M.2.12.13.

Fig. M.2.12.13.

When edge chamfer is constructed, the method adds MbFilletSolid constructor in the log of newly
constructed body. The constructor is declared in cr_chamfer solid.h file.

test.exe test application processes body edges using New ->Body -> By Processing Edges -> Leg-Leg
Chamfer, New ->Body -> By Processing Edges -> Leg-Corner Chamber and New ->Body -> By Processing
Edges -> Corner-Leg Chamfer menu commands.

When in methods of constructing a chamfer, the parameters distancel and distance2 are not equal and
several edges are specified for processing, it is difficult to understand what corresponds to what. In this
situation, it is suggested to use auxiliary methods: SmoothPhantom(...), SmoothSequence...),
SmoothPositionData(...), declared in the file action phantom.h. The SmoothPhantom(...) method builds
simplified surfaces to simulate future fillets. The SmoothSequence(...) method builds a series of edges to
which, if desired, smoothly joining edges that can be processed together can be added. The
SmoothPositionData(...) method calculates three points for the processed edges that are used for the
phantom dimensions of the radii, legs, and corners of the operation. Usually, with the help of these methods,
a phantom is drawn to understand what will happen as a result of the operation, and it is possible to change
the parameters if necessary.
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Before the construction chamfers processed edges are sorted, if necessary, or at the request added to
them smoothly mating edges and of the edges are smooth sequence abutting edges. distancel and distance2
parameters attached to the first and second surfaces, respectively, of the MbSurfacelntersectionCurve curve
of the first edge in the sequence of smoothly mating edges. Surfaces can be obtained intersection curve
methods GetCurveOneSurface() and GetCurveTwoSurface(). According distancel and distance2 first
edge defined parameters for the other edges of each sequence. So, if the first edge pointer edge-
>GetIntersectionCurve().GetSurfaceOne() is a pointer &edge->GetFacePlus()-
>GetSurface(). GetSurface(), then the distancel will correspond to the chamfer to the face faceMinus , and
distance2 will correspond to the chamfer to the face facePlus of the first edge of sequence

M.2.13. Constructing a Thin-Wall Body

The method
MbResultType
ThinSolid ( MbSolid & solid,

MbeCopyMode sameShell,
RPArray<MbFace> & outFaces,
SweptValues & params,
const MbSNameMaker & names,
MbSolid *& result )
constructs a thin-wall body by excluding specified faces from the original body.
Input parameters of the method are as follows:
e solid is the original body,
*  sameShell is a version of original body copying method,
e outFaces is a set of faces that should be excluded,
*  params are construction parameters,
* names is a namer of constructed faces.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method excludes outFaces faces from solid original body, it also "sets a predetermined thickness"
for remaining faces. sameShell parameter controls transfer of faces, edges and vertices from solid original
body to result constructed body. params parameter contains data on wall thickness in remaining faces, as
well as data on closure of constructed result body. The thickness of remaining faces may be equal to
params.thickness1 in positive direction of normal to the face or params.thickness2 in the negative direction
of normal to the face. If params.shellClosed=false, then a nonclosed body will be constructed. names
parameter is used to name the faces of the constructed body. To execute the operation, outFaces to be deleted
should not have smooth edges attached to remaining edges of the original body at a shared perimeter.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

In Fig. M.2.13.1, you can see solid original body and outFaces faces that are deleted.
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solid

outFaces

Fig. M.2.13.1.

In Fig. M.2.13.2, you can see result newly constructed thin-wall body with the remaining faces thickened
inside the original body.

params.shellClosed = true

params.thickness1 = 0

params.thickness?2

Fig. M.2.13.2.

In Fig. M.2.13.3, you can see newly constructed result thin-wall body with remaining faces thickened
outside the original body.
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params.shellClosed = true

params.thickness|
— /

-

params.thickness2 = 0

Fig. M.2.13.3.
In Fig. M.2.13.4, you can see result non-closed body.

params.shellClosed = false

params.thickness1 =0
params.thickness2 = ()

Fig. M.2.13.4.

In Fig. M.2.13.5, you can see a thin walled-body that was constructed in case of empty set of faces that
should be deleted.
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outFaces,Count() = 0 params.shellClosed = true

params.thickness2 =0

params.thicknessl =0

Fig. M.2.13.5.

ThinSolid method adds MbShellSolid constructor to the log of the newly constructed body that contains
all data required to execute the operation. MbShellSolid constructor is declared in cr_thin_shell solid.h file.

test.exe test application constructs a thin-wall body using New ->Body -> By Processing Faces ->
Uniform Thickening menu command.

M.2.14. Constructing a Thin-Wall Body with Various Wall Thickness

The method
MbResultType
ThinSolid ( MbSolid & solid,
MbeCopyMode sameShell,
RPArray<MbFace> & outFaces,
RPArray<MbFace> & offFaces,
SArray<double> & offDistances,
SweptValues & params,
const MbSNameMaker & names,
MbSolid *& result )
constructs a thin-wall body by excluding specified faces and setting various thickness of remaining faces in
the original body.
Input parameters of the method are as follows:
* solid is the original body,
*  sameShell is a version of original body copying method,
¢ outFaces is a set of faces that should be excluded,
» offFaces is a set of faces for which individual thicknesses were set.
*  offDistances is the set of individual thicknesses (it is synchronized with offFaces),
*  params are construction parameters,
* names is a namer of constructed faces.
Method output parameter is result constructed body.
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If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method deletes outFaces faces from solid original body, it also "sets a predetermined thickness" for
remaining faces. Face thickness may vary from face to face. sameShell parameter controls transfer of faces,
edges and vertices from solid original body to result constructed body. offFaces parameter contains faces,
for which individual values of offDistances thicknesses were set. offFaces[i] thickness will be set for
offDistancesli] faces. Thickness of the remaining faces is defined by params parameter. params parameter
contains data on closure of result body, as well as data on wall thickness for the faces that should be kept and
do not belong to offFaces set. The tickness of remaining faces may be equal to params.thickness1 in positive
direction of normal to the face or params.thickness2 in the negative direction of normal to the face. names
parameter is used to name the faces of the constructed body. To execute the operation, outFaces to be deleted
should not have smooth edges attached to remaining edges of the original body at a shared perimeter.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces

In Fig. M.2.14.1, you can see solid original body, outFaces faces that should be deleted and offFaces for
which individual offDistances thickness values were set.

solid

offFaces|[0]

outFaces

offFaces[1]

Fig. M.2.14.1.

In Fig. M.2.14.2, you can see result constructed body with kept and newly constructed faces.
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params.shellClosed = true

offDistances[0]

params.thickness|

params.thickness2 = 0 offDistances|1]

Fig. M.2.14.2.

To execute the operation, each of the offFaces faces should not have smooth edges attached to the
remaining edges of the original body along the shared perimeter if such faces have different thickness.

ThinSolid method adds MbShellSolid constructor to the log of the newly constructed body that contains
all data required to execute the operation. MbShellSolid constructor is declared in cr_thin_shell solid.h file.

test.exe test application constructs a thin-wall body using New ->Body -> By Processing Faces -> With
Uneven Thickness menu command.

M.2.15. Constructing Bodies by Thickening the Surface

The method
MbResultType
ThinSolid ( const MbSurface & surface,
bool faceSense,
SweptValues & params,
const MbSNameMaker & names,
SimpleName name,
MbSolid *& result )
constructs a body by defining the thickness of the specified surface.
Input parameters of the method are as follows:
» surface is the specified surface,
* faceSense determines orientation of normal to the surface at the face of the constructed body,
*  params are construction parameters,
* names is face namer,
* name is operation name.
Method output parameter is result constructed body.
If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.
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The method is declared in action_solid.h file.

This method constructs a face based on surface surface, and then a body is constructed by "giving a
thickness to this face". faceSense indicates whether the direction of normal to the surface coincides with the
direction of normal to the face. New thickness of the face is determined by params parameter. params
parameter contains wall thickness data for constructed result body. Wall thickness may be equal to
params.thickness1 (for positive direction of the normal to the face) or params.thickness2 (for negative
direction of the normal to the face). names and name parameters provide naming of the faces of the newly
constructed body.

In Fig. M.2.15.1, you can see surface original surface.

surface

Fig. M.2.15.1.
In Fig. M.2.15.2, you can see constructed result body.

result

params.thickness1 + params.thickness2

Fig. M.2.15.2.

ThinSolid method adds MbShellSolid constructor to the log of the newly constructed body that contains
all data required to execute the operation. MbShellSolid constructor is declared in cr_thin_shell solid.h file.

test.exe test application constructs a thin-wall body using New ->Body -> Based on Surface ->
Thickening menu command.

M.2.16. Constructing a Mirror Body

The method
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MbResultType
MirrorSolid ( const MbSolid & solid,
const MbPlacement3D & place,
const MbSNameMaker & names,
MbSolid *& result)
constructs a mirror copy of the original body in relation to the given plane.
Input parameters of the method are as follows:
* solid is the original body,
* place is local coordinate system, its XY plane is a mirror plane,
* names is cut face namer.
Method output parameter is result constructed body.
If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.
The method is declared in action_solid.h file.
This method constructs a mirror copy of solid original body in relation to XY plane of specified place
local coordinate system. names parameter is used to name the faces of the constructed body.
In Fig. M.2.16.1, you can see solid original body and place symmetry plane.

place

solid

Fig. M.2.16.1.
In Fig. M.2.16.2, you can see solid original body and result constructed body.
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place

result

solid

Fig. M.2.16.2.

MirrorSolid method adds MbSymmetrySolid constructor in a log of the newly constructed body that
contains all data required to execute the operation. MbSymmetrySolid constructor is declared in
cr_symmetry_solid.h file.

test.exe test application constructs a symmetrical body using New ->Body -> Based on Body ->
Symmetrical menu command.

M.2.17. Boolean Operation on Bodies and Set of Bodies

The method
MbResultType
UnionResult ( MbSolid * solid,

MbeCopyMode sameShell,

RPArray<MbSolid> & solids,

MbeCopyMode sameShells,

OperationType oTjpe,

bool checklIntersect,

bool mergeFaces,

const MbSNameMaker & names,

bool isArray,

MbSolid *& result,

RPArray<MbSolid> * notGluedSolids = NULL )

merges a given set of bodies and executes a determined Boolean operation on the original body if it was
specified.
Input parameters of the method are as follows:

solid is the original body (it may be equal to zero),

sameShell is a version of original body copying method,

solids is the set of bodies,

sameShells is copying method for the bodies in the set,

oType is Boolean operation type: bo_Union means merging of the bodies,
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bo_Intersect means intersection of the bodies,
bo_Difference means subtraction of the bodies,
* checkintersect is a flag used to check intersection for a set of bodies (false means "no check"),
*  mergeFaces indicates whether similar faces should be merged,
e names is face namer,
* isArray is regularity flag for the set of bodies.

Results of the method are result constructed body and notGluedSolids set of bodies that were not used in
the operation (it may be equal to zero).

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method is a version of BooleanSolid Boolean operation that accelerates execution when the same
Boolean operation with solid body is applied to many other bodies. First, this method merges the bodies
from solids set and creates a temporary body, then it executes specified oType Boolean operation for solid
body on this temporary body. solids bodies may not overlap with each other. sameShell parameter controls
transfer of faces, edges and vertices from solid original body to result constructed body. sameShells
parameter controls transfer of faces, edges and vertices from solids set of bodies to result resulting body.
checklntersect and isArray parameters control construction of the temporary body for solids set of bodies.
mergeFaces parameter controls merging of similar faces. names parameter is used to name the faces of the
constructed body.

sameShell (sameShells) parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item 0.7.9. Copying a Set of Faces.

OperationType oType parameter defines Boolean operation type; it takes one of the following three
values: bo_Union, bo_Intersect, bo_Difference. If oType=bo_Union, then the method merges solid body and
solids set of bodies; if oType=bo_Intersect, then the method intersects solid body and solids set of bodies; if
oType=bo_Difference, then the method subtracts solids set of bodies from solid body.

checkintersect and isArray parameters are used to accelerate UnionResult method.

checklntersect parameter gives a command to check intersection of bodies included in solids set with
each other. If checkintersect==true, then all intersecting bodies from solids set are merged during
construction using a Boolean operation. Otherwise, all faces of bodies from the original set are copied to the
newly constructed body. Despite the value of checkintersect parameter, all nonintersecting solids bodies
transfer their faces to newly constructed temporary body.

mergeFaces parameter permits to merge similar faces in result body that was constructed or to keep them
separated. Influence of mergeFaces parameter is shown in Figures M.2.17.2 and M.2.17.3. If
mergeFaces==false, then similar faces are not merged.

isArray is used only if checklntersect==true and it informs on regularity of solids set of bodies. If
isArray==true, then the bodies of the set are located in nodes of rectangular or circular grid, and positions of
the bodies are specified in face names.

notGluedSolids parameter contains bodies that were not used in the operation because it is impossible to
merge them with the common temporary body.

In Fig. M.2.17.1, you can see solid original body and solids set of bodies.
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solids

Fig. M.2.17.1.

In Fig. M.2.17.2, you can see result body, which is the result of gluing solids bodies to solid body. In this
case, checkintersect parameter may be equal to false, as solids bodies do not intersect with each other.

oType =bo Union

Fig. M.2.17.2.

In Fig. M.2.17.3, you can see solid original body and solids set of bodies.
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solids

Fig. M.2.17.3.

In Fig. M.2.17.4, you can see result body that was constructed by subtracting solids bodies from solid
body, if the method was used with mergeFaces== true. In this case, checkintersect parameter should be equal
to true, as solids bodies intersect with each other.

oType =bo Difference  mergeFaces = true

Fig. M.2.17.4.

In Fig. M.2.17.5, you can see result body that was constructed by subtracting solids bodies from solid if
the method was used with mergeFaces ==false.
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olype =bo Difference  mergeFaces =false

Fig. M.2.17.5.

In Fig. M.2.17.6, you can also see faces of the resulting body (that was constructed by subtracting solids
bodies from solid body (given in Figure M.2.17.5)) colored in the colors of the original bodies. The shape of
faces permits you to determine the sequence how solids bodies were included into the temporary body: a
body leaves a more complete impress if it was included in the temporary body before other bodies.

oType =bo Difference  mergeFaces = false

Fig. M.2.17.6.

UnionResult method adds MbUnionSolid constructor in the log of the newly constructed body that
contains all data required to execute the operation. MbUnionSolid constructor is declared in cr_union_solid.h
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file.

test.exe test application executes body Boolean operations on a set of bodies using New ->Body -> Attach
to Other Body -> In a Set of Bodies, New ->Body -> Cut from Other Body -> In a Set of Bodies, New -
>Body -> Intersection with Other Body -> In a Set of Bodies menu commands.

M.2.18. Merging a Set of Bodies

The method
MbResultType
UnionSolid ( RPArray<MbSolid> & solids,

MbeCopyMode sameShells,

bool checkiIntersect,

const MbSNameMaker & names,

bool isArray,

MbSolid*& result,

RPArray<MbSolid> * notGluedSolids = NULL )
merges bodies of the specified set.

Input parameters of the method are as follows:

e solids is the set of bodies,

* sameShells is copying method for the bodies in the set,

* checklntersect is a flag used to check intersection for a set of bodies (false means "no check"),
e names is face namer,

* isArray is a flag defining whether the set of bodies is regular.

Results of the method are result constructed body and notGluedSolids set of bodies that were not used in
the operation (it may be equal to zero).

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

The method is similar to UnionResult method, if solid=0, sameShell=cm_Same, oType=bo_Base and
mergeFaces=true. This method accelerates execution when it is required to merge many bodies. The method
merges solids bodies and constructs result body; the bodies may not intersect with each other. sameShells
parameter controls transfer of faces, edges and vertices from solids set of bodies to result resulting body.
checkintersect and isArray parameters control construction of the temporary body for solids set of bodies.
names parameter is used to name the faces of the constructed body.

sameShells parameter can take one of the following four values: cm_ Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces

checklntersect and isArray parameters are used to accelerate UnionResult method.

checklntersect parameter gives a command to check intersection of bodies included in solids set with
each other. If checkintersect==true, then a Boolean operation is executed to merge all intersecting bodies
included in solids set. Otherwise, all faces of bodies from the original set are copied to the newly constructed
body. Despite the value of checkintersect parameter, all non-intersecting solids bodies transfer their faces to
newly constructed temporary body.

isArray is used only if checklntersect==true and it informs on regularity of solids set of bodies. If
isArray==true, then the bodies of the set are located in nodes of rectangular or circular grid, and positions of
the bodies are specified in face names.

notGluedSolids parameter contains bodies that were not used in the operation because it was impossible
to merge them.

In Fig. M.2.18.1, you can see solids original bodies.
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solids

Fig. M.2.18.1.

In Fig. M.2.18.2, you can see result body constructed by merging solids bodies. In this case,
checkintersect parameter should be equal to true, as solids bodies intersect with each other.

result

Fig. M.2.18.2.

Method
MbResultType
UnionSolid ( const RPArray<MbSolid> & solids,
const MbSNameMaker & names,
MbSolid *& result )
is a simplified version of discussed method having the same name, the two methods coincide if
sameShells=cm_Same, checkintersect==false, isArray==false and notGluedSolids=—=NULL. The latter
method does not check or construct anything, rather it simply composes result body using all faces of solids
bodies. So original bodies and a newly constructed body have the same faces.
UnionSolid methods add MbUnionSolid constructor in the log of the newly constructed body that
contains all data required to execute the operation. MbUnionSolid constructor is declared in cr_union_solid.h
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file.
test.exe test application executes body Boolean operations on a set of bodies using New ->Body -> Based
on Body -> Set of Bodies menu command.

M.2.19. Divide a Body to Disconnected Parts

The method
unsigned int
DetachParts ( MbSolid & solid,

RPArray<MbSolid> & parts,
bool sort,
const MbSNameMaker & names )
divides a body to disconnected parts.
Input parameters of the method are as follows:

* solid is the original body,

* sortis a flag used to sort disconnected parts in descending order by the larges dimension,

* names is face namer.

Input parameters of this method are solid original body and parts set of its disconnected parts.

This method returns the number of disconnected parts.

The method is declared in action_solid.h file.

After subtracting solid2 body from solid2 body shown in Figure M.2.19.1, the result of solid Boolean
operation would consist of several topologically disconnected parts (Figure M.2.19.2), although they would
behave as a single object. The method permits to divide solid body that consists of several topologically
disconnected parts to individual bodies. One part stays in solid original body, and all other parts are sent to
received parts container.

solid2

Fig. M.2.19.1.
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solid = solid1 - solid2

Fig. M.2.19.2.

If sorting flag sort==true, then the part with largest dimensions will remain in the original body, and
separated parts will be sorted by dimensions in descending order as shown in Figure M.2.19.3. Otherwise,
the part topologically related to the first face will remain in the original body, and separated parts will be
sorted by the number of initial face in the original body.

solid

parts[1]

parts[0] sort = true

Fig. M.2.19.3.

names parameter provides naming of faces in the created body and operation versioning.
Method
unsigned int
CreateParts ( const MbSolid & solid,
RPArray<MbSolid> & parts,
const MbSNameMaker & names )
executes the same operations as the previous method, the difference is that it does not change solid original
body and adds all topologically disconnected parts of the original body to parts bodies as shown in Figure
M.2.19.4.
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parts[0]

parts[2]

parts[1]

Fig. M.2.19.4.

parts bodies will be constructed on the same faces as solid original body.

DetachParts and CreateParts methods add MbDetachSolid constructor in the log of newly constructed
body that contains all data required to execute the operation. MbDetachSolid constructor is declared in
cr_detach solid.h file.

test.exe test application executes body Boolean operations on a set of bodies using Modify ->Body or
Shell->Divide Parts menu command.

M.2.20. Separation of Disconnected Parts

The method
MbResultType
ShellPart ( const MbSolid & solid,

size tid,
const MbPath & path,
const MbSNameMaker & names,
MbPartSolidIndices & partIndices,
MbSolid * & result )
creates a separate body from a specified part of the original body that falls apart.
Input parameters of the method are as follows:
* solid is the original body,
* id is the number of the selected part of the original body,
* path is the identifier of the selected part of the original body in the model,
* names is face namer.
* partlndices are indices of body parts.

Output parameters of this method are result constructed body and indices of body parts.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration. The method is declared in action_solid.h file.

The method constructs a body from the specified part of original body. The original body should consist
of separate parts. In Fig. M.2.20.1, you can see the result of Boolean operation that subtracts bodies shown in
Figure M.2.19.1. The resulting body consists of several topologically separated parts. This method permits to
create a body keeping only one of topologically separated parts of the original body.

id indicates part number of solid original body. path parameter contains path to the body part. In a simple
case, the path to body part contains part number in id original body.

In Fig. M.2.20.1, you can see an original body that consists of several topologically separated parts.
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- solid  multistate = ms Multiple

Fig. M.2.20.1.

In Fig. M.2.20.2, you can see a newly constructed body consisting of one selected part of the original body.

result

multistate = ms_ Single

Fig. M.2.20.2.

result body will be constructed on the same faces as solid original body.

ShellPart method adds MbDetachSolid constructor in the log of newly constructed body that contains all
data required to execute the operation. MbDetachSolid constructor is declared in cr_detach solid.h file.

test.exe test application executes body Boolean operations on a set of bodies using New ->Body -> Based
on Body -> Part of Bodies Set menu command.

M.2.21. Splitting Body Faces

The method
MbResultType
SplitSolid ( MbSolid & solid,
MbeCopyMode sameShell,
const RPArray<MbSpaceltem> & items,
bool same,
RPArray<MbFace> & faces,
const MbSNameMaker & names,
MbSolid *& result )
splits specified body faces with spatial curves, surfaces and shells.
Input parameters of the method are as follows:
e solid is the original body,
* sameShell is a version of original body copying method,
* items are spatial elements that split the faces,
* same indicates whether original spatial elements (zrue) or theirs copies (false) should be used,
» faces is a set of splitted faces,
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* names is a namer of constructed faces.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration. The method is declared in action_solid.h file.

The method splits specified faces of solid original body using items 3D objects, if specified faces
intersect with items objects. Curves, surfaces or a body may be used as items objects. To execute the
operation, the cutting objects should fully intersect with the specified faces of the original body. sameShell
parameter controls transfer of faces, edges and vertices from solid original body to result constructed body.
same parameter controls copying of cutting objects. names parameter is used to name the faces of the
constructed body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,

cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item 0.7.9. Copying a Set of Faces.
In Fig. M.2.21.1, you can see solid original body, faces that should be split and items[0] cutting surface.

lid
S0 faces[0]

items[0]
faces[1]

Fig. M.2.21.1.
In Fig. M.2.21.2, you can see newly constructed result body with splitted specified faces. New edges
return true to IsSplit query. In Fig. M.2.21.3, splitted faces of the constructed body are painted in different

colors.
result result

Fig. M.2.21.2. Fig. M.2.21.3.

Method
MbResultType
SplitSolid ( MbSolid & solid,
MbeCopyMode sameShell,
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const MbPlacement3D & place,
MbeSenseValue #ype,
const RPArray<MbContour> & contours,
bool same,
RPArray<MbFace> & faces,
const MbSNameMaker & names,
MbSolid *& result )
executes the same actions as the method considered above, the difference is that instead of using items
splitting objects, solid body faces are split by surfaces constructed by extruding two-dimensional contours
located in XY plane of place local coordinate system. The contours are extruded in direction of place.axis.Z
of the local coordinate system; extrusion length should provide a complete intersection with the original
body.
SplitSolid methods add MbSplitShell constructor in the log of the newly constructed body that contains
all data required to execute the operation. MbSplitShell constructor is declared in cr_split_shell.h file.
test.exe test application splits specified faces of the body using New ->Body -> By Processing Faces ->
By Splitting Face menu command.

M.2.22. Constructing a Hole, Pocket or Slot in a Body

The method
MbResultType
HoleSolid ( MbSolid * solid,
MbeCopyMode sameShell,
const MbPlacement3D & place,
const HoleValues & parameters,
const MbSNameMaker & names,
MbSolid *& result )

constructs a hole, a pocket or a cam slot in a body.

Input parameters of the method are as follows:

* solid is the original body (it may be equal to zero),

*  sameShell is body copying method,

* place is local coordinate system used to position a cutting tool,
*  parameters are construction parameters,

* names is face namer.

Method output parameter is result constructed body.

If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.

The method is declared in action_solid.h file.

This method constructs an auxiliary body in the form of deleted object for a hole, a pocket or a slot. If
solid original body is specified, then the method returns the difference between the original body and the
auxiliary body. If the original body is not specified (solid==0), then the method returns the auxiliary body.
To execute the operation, auxiliary body should intersect with the original body. parameters parameter
defines shape of hole, pocket or slot. sameShell parameter controls transfer of faces, edges and vertices from
solid original body to result constructed body. names parameter is used to name the faces of the constructed
body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode intersection is described in item O.7.9. Copying a Set of Faces

Construction is executed in place local coordinate system taking into account parameters.placeAngle and
parameters.azimuthAngle rotation angles. parameters.placeAngle parameter defines the angle of rotation of
place local coordinate system with respect to place.axisY axis. parameters.azimuthAngle parameter defines
the angles of rotation of place local coordinate system with respect to place.axisZ axis. parameters.surface
surface may be not given. If parameters.surface is not equal to zero, then this surface is used to properly
handle an inlet to a hole, pocket or slot.
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HoleValues

placeAngle
azimuthdngle
surface
doPhantom

=

In Fig. M.2.22.1, you can see data used for construction and parameters inheritance scheme from
HoleValues abstract class.

fBurchulues ] ( PocketValues SlotValues j
capDiamefter length length
capDepth width width
capAngle depth depth
diameter cornerRadius bottomWigth
depth floorRadius bottomDepth
spikeAngle typerdngle JloorRadius
arcRadius type tailAngle
prolong type
down )
ype

Fig. M.2.22.1.

BorerValues parameters should be used to construct a hole. There are six hole types defined by the
BorerValues::#ype parameter that takes one of the following values: bt SImpleCylinder, bt TwofoldCylinder,
bt_ChamferCylinder, bt ComplexCylinder, bt SImpleCone, bt ArcCylinder. In Fig. M.2.22.2, M.2.22.3,
M.2.22.4, M.2.22.5, M.2.22.6, M.2.22.7, you can see holes having different shapes.
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diameter

BorerValues::type = bt_SimpleCylinder

Fig. M.2.22.2.
angle

T T

diameter

depth

BorerValues::type = bt ChamferCylinder

Fig. M.2.22.4.

capDiameter

diameter

BorerValues::fype = bt TwofoldCylinder
Fig. M.2.22.3.

capDiameter

diameter

capDepth

depth

BorerValues::fype = bt ComplexCylinder

Fig. M.2.22.5.
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angle diameter

arcRadius

diameter

depth
depth

BorerValues::type = bt ArcCylinder
BorerValues::type =bt SimpleCone

Fig. M.2.22.6. Fig. M.2.22.7.

PocketValues parameters should be wused to construct a pocket or a protrusion. If
PocketValues::fype=false, then specified parameters are used to construct a pocket; if
PocketValues::fype=true, then specified parameters are used to construct a protrusion. In Fig. M.2.22.8, you
can see a body with a rectangular pocket without a slope of side faces.

taperAngle = 0 type = false

length

Fig. M.2.22.8.

SlotValues parameters should be used to construct a slot. There are four slot types defined by
SlotValues::type parameter that takes one of the following values: st BallEnd, st Rectangular, st TShaped,

st DoveTail.
HoleSolid method adds MbRibSolid constructor in the log of the newly constructed body that contains

data required to execute the operation. MbHoleSolid constructor is declared in cr_hole solid.h file.
test.exe test application splits specified faces of the body using New ->Body -> Based on Body -> With a

Hole menu command.
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M.2.23. Constructing a Body with an Enforcement Rib

The method
MbResultType
RibSolid ( MbSolid & solid,
MbeCopyMode sameShell,
const MbPlacement3D & place,
const MbContour & contour,
size t index,
RibValues & params,
const MbSNameMaker & names,
MbSolid *& result )
constructs a body with an enforcement rib.
Input parameters of the method are as follows:
* solid is the original body,
*  sameShell is a version of original body copying method,
* place is a local coordinate system, its XY plane is a symmetry plane,
* contour is shape-generating contour in XY plane of local coordinate system,
* index is segment number in the contour,
*  params are parameters of the enforcement rib,
* names is the namer of rib faces.
Method output parameter is result constructed body.
If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration. The method is declared in action_solid.h file.
This method constructs an enforcement rib using specified contour contour and it merges the rib with
solid original body. Contour segment with specified number defines a slope vector.
params parameter defines data for building (Fig. M.2.23.1).

[ RibValues j

double anglel

double angle2

ExtrudeSide side { es Left,
es Right,
es Up,
es Down }

Fig. M.2.23.1.

RibValues structure defined in the file swept_parameter.h

sameShell parameter controls transfer of faces, edges and vertices from solid original body to result
constructed body. names parameter is used to name the faces of the constructed body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm_KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item O.7.9. Copying a Set of Faces.

In Fig. M.2.23.2, you can see solid original body, place local coordinate system and contour in XY plane
of the latter.
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contour

place

Fig. M.2.23.2.

In Fig. M.2.23.3, you can see newly constructed enforcement rib without a slope of side faces.

params.thickness2

params.thickness1

params.angle2 =0 params.anglel =0

Fig. M.2.23.3.

In Fig. M.2.23.4, you can see newly constructed enforcement rib with a slope of side faces.
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params.angle2 > 0 params.anglel

Fig. M.2.23.4.

RibSolid method adds MbRibSolid constructor in the log of newly constructed body that contains all data
required to execute the operation. MbRibSolid constructor is declared in cr_rib_solid.h file.

test.exe test application splits specified faces of the body using New ->Body -> Based on Body -> With
Enforcement Rib menu command.

M.2.24. Sloping Body Faces

The method
MbResultType
DraftSolid ( MbSolid & solid,
MbeCopyMode sameShell,
const MbPlacement3D & place,
double angle,
const RPArray<MbFace> & faces,
MbeFacePropagation propagation,
bool reverse,
const MbSNameMaker & names,
MbSolid *& result )
constructs a body with specified faces of the body sloped from neutral isometric plane at a predetermined
angle.
Input parameters of the method are as follows:
* solid is the original body,
* sameShell is a version of original body copying method,
* place is neutral plane,
* angle is slope angle,
* faces is a set of faces that should be sloped,
* propagation is a flag of capturing faces that are smoothly joined with sloping faces,
* reverse is a flag indicating a reverse slope,
* names is a namer of constructed faces.
Method output parameter is result constructed body.
If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration. The method is declared in action_solid.h file.
This method constructs a body with faces sloped relative to their position in selid original body. params
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parameter defines construction parameters. sameShell parameter controls transfer of faces, edges and vertices
from solid original body to result constructed body. XY plane in place local coordinate system defines the
plane, in relation to which body faces are sloped. angle parameter defines slope angle. faces set contains the
faces that should be sloped. propagation parameter controls addition to the set of faces that should be sloped
other body faces that should be smoothly joined with sloped faces. reverse parameter defines slope
direction. names parameter is used to name the faces of the constructed body.

sameShell enumeration parameter can take one of the following four values: cm_Copy, cm KeepSurface,
cm_KeepHistory, cm_Same. MbeCopyMode enumeration is described in item 0.7.9. Copying a Set of Faces.

In Fig. M.2.24.1, you can see solid original body, place local coordinate system, in relation to XY plane
of the latter sloping is executed and faces that should be sloped.

solid

Fig M.2.24.1.
In Fig. M.2.24.2, you can see the constructed body; its specified faces are sloped.

Fig. M.2.24.2.

DraftSolid method adds MbDraftSolid constructor in the log of the newly constructed body that contains
all data required to execute the operation. MbDraftSolid constructor is declared in cr_draft solid.h file.
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test.exe test application splits the specified faces of the body using New ->Body -> By Processing Faces -
> By Sloping Faces menu command.

M.2.25. Multiplication of Bodies

Method
MbResultType
DuplicationSolid ( const MbSolid & solid,
const DuplicationValues & parameters,
const MbSNameMaker & names,
MbSolid *& result )
constructs copies of the original body, transforms them according a specified rule and merges them into a
single body.
Input parameters of the method are as follows:
* solid is the original body,
*  parameters are construction parameters,
* names is face namer.
Method output parameter is result constructed body.
If successful, the method returns rt Success, otherwise it returns error code from MbResultType
enumeration.
The method is declared in action_solid.h file.
names parameter is used to name the faces of the constructed body. parameters parameter defines
construction parameters. In Fig. M.2.25.1, you can see data used for construction and parameter inheritance
scheme from DuplicationValues abstract class.

E DuplicationValues I

==,

’—Duplicationl\’lesh\’alues EDuplicationMatrix\"aluesj

—

axis1
axis2
stepl
step2
numl
num?2
isPolar

matrices

Fig. M.2.25.1.

DuplicationMeshValues parameters should be used to make copies of the body and align them to 2D grid.
The following two multiplication methods are supported: using two directions and using a polar grid.
parameters.isPolar parameter defines grid type. If parameters.isPolar=false, then the original body and its
copies are located in the nodes of 2D grid having parameters.axis1 and parameters.axis2. The original body
is the reference point. Along parameters.axisl, parameters.numl copies of the body are located with
parameters.stepl; along parameters.axis2 axis, parameters.num2 copies of the body are located with
parameters.step2, including the original body. If parameters.isPolar=true, than newly constructed copies of
the body are located in nodes of a polar grid. The original body is the reference point. Radial direction of the
grid is determined by parameters.axisl vector, and rotation axis is determined by vectors product of
parameters.axisl and parameters.axis2. parameters.numl copies of the body are located with
parameters.stepl along radial directions; parameters.num?2 copies of the body are located on each circle with
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angular parameters.step?2 .

You should use DuplicationMatrixValues parameters to multiply a body and to transform its copies by a
set of matrices. parameters.matrices parameter defines a set of transformation matrices.

If after construction the original body or its copies intersect with each other, then a Boolean operation is
executed to merge intersecting bodies. In Fig. M.2.25.2, you can see a body multiplied in a polar grid.

— e
- num2 =12

DuplicationMeshValues::isPolar = true

Fig. M.2.25.2.

DuplicationSolid method adds MbDuplicationSolid constructor in the log of newly constructed body that
contains all data required to execute the operation. MbDuplicationSolid constructor is declared in
cr_duplication_solid.h file.

test.exe test application splits specified faces of the body using New ->Body -> Based on Body -> By
Grid Multiplication and New ->Body -> Based on Body -> By Matrix Multiplication menu commands.
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M.2.26. Dividing a shell into parts using a given set of edges

The method
MbResultType DivideShell( MbSolid & solid,
MbeCopyMode sameShell,
const MbDivideShellParams & params,
c3d::SolidSPtr & resSolid );

divides a shell of the solid using a given set of edges.
Input parameters of the method are as follows:

* solid - the original body;

* sameShell - copying method for the body;

* params - the object with parameters of operation.
Method output parameter:

e resSolid - result constructed body.

The method returns the result code of the operation.

The MbDivideShellParams class contains the input data to perform the shell split operation. When
creating an object of the MbDivideShellParams class, it can be immediately initialized with a vector of edges
along which the division will be performed.

MbDivideShellParams class constructor

MbDivideShellParams( const c3d::EdgesSPtrVector & edges,
const MbSNameMaker & operNames );
where,
* edges - the vector of edges along which the division will be made;
* operNames - namer.
As a result of the successful operation of the function, the solid input body will be split and all received
non-closed bodies will be placed in the shell of the returned resSolid body.

M.2.27. Spliting the solid into separate parts

The method
size t CreateParts( const MbSolid & solid,
RPArray<MbSolid> & parts,
const MbSNameMaker & names );

divides the original body into separate parts if the body contains topologically unrelated elements.

Input parameters of the method are as follows:
* solid - the original body;
* operNames - namer.

Method output parameter:
*  parts - parts of the body.

The method returns the number of created parts.
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M.3. TWO-DIMENSIONAL CURVE CONSTRUCTION METHODS

Two-dimensional curves are used to describe domain of definition for a surface, to work with curves on
surfaces, to construct curves as intersection of surfaces, and to construct mating surfaces. In order to
construct solid bodies, two-dimensional curves are used as input parameters as sketch elements.
Furthermore, two-dimensional curves are used as elements of flat projections in geometric models. All two-
dimensional curves are inheritors of MbCurve class, they are described in Chapter O.3. TWO-
DIMENSIONAL CURVES. A curve can be constructed by direct call of corresponding constructor or using
the methods described in this section.

M.3.1. Constructing a Two-Dimensional Straight Line/Segment

The method
MbResultType
Line ( const MbCartPoint & point1,
constMbCartPoint & point2,
MbCurve *& result)
constructs a two-dimensional straight line based on two non-matching points.
Input parameters of the method are as follows:
* point] is the first point that lies on the straight line,
* point2 is the second point, that lies on the straight line,
The output parameter of the method is a result constructed body.
If successful, the method returns rt Success, otherwise it returns an error code from MbResultType
enumeration.
The method is declared in action_curve.h file.
pointl parameter defines the start point of the straight line that corresponds to zero parameter value. The
vector starting in pointl and ending in point2 defines the direction of the line, Fig. M.3.1.1. A derivative of
straight line has unit length.

W point2
pointl

Fig. M.3.1.1.

Straight lines are described in Item O.3.2. MbLine Two-Dimensional Straight Line.
The method
MbResultType
Segment ( const & pointl,
const MbCartPoint& point2,
MbCartPoint *& resulf)
constructs a two-dimensional straight line segment based on two non-matching points.
Input parameters of the method are as follows:
* point] is the segment starting point,
*  point2 is the segment end point.
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
The method is declared in action_curve.h file.
pointl parameter defines the starting point of the line segment, it corresponds to zero value of curve
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parameter. point2 parameter defines the end point of the line segment, it corresponds to curve parameter
equal to one, see Fig. M.3.1.2.

pointl el
- point2

Fig. M.3.1.2.

Line segments are described in Item O.3.3. MbLineSegment Two-Dimensional Straight Line Segment.

M.3.2. Constructing a Two-Dimensional Circle, Ellipse and their Arcs

The method
MbResultType
Arc ( const MbCartPoint & centre,

const SArray<MbCartPoint> & points,

bool closed,

double angle,

double & a,

double & b,

MbCurve *& result )
constructs a two-dimensional elliptic arc. In a special case, the method constructs a two-dimensional circular
arc.

Input parameters of the method are as follows:

* centre is a center of the ellipse,

*  points is a set of points, it can be empty,

* closed is a flag that defines whether the curve is cyclically closed,

* angle is an angle that defines the size of the elliptic arc,

* ais the length of the first semi-axis of the ellipse (it is calculated if points set is non-empty),
*  bis the length of the second semi-axis (calculated if points set is non-empty).

The output parameters of the method are semi-axes of the ellipse and constructed result curve.

If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.

The method is declared in action_curve.h file.

The curve can be constructed based either on specified points or on scalar parameters. centre parameter
defines the central point of the ellipse. points set can be empty, but in this case a and b ellipse semi-axis
lengths should be non-empty.

If points set contains two elements, then centre, points[0], points[1] points determine the plane, in which
axisX and axisY of the local ellipse coordinate system are located: axisX of local ellipse coordinate system is
directed from the center to points[0]; axisY of the local ellipse coordinate system is orthogonal to axisX and
directed from the center to points[1] point. The distance between points centre and points[0] defines the
length of the first ellipse semi-axis a, and the distance between centre point and the projection of points[1] to
axisY defines the length of the second ellipse semi-axis b, see Fig. M.3.2.1.
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points[1]

points|0]

closed = true

Fig. M.3.2.1.

If points set contains one element, a circle with a radius equal to the distance between centre and
points[0] points will be constructed. axisX of the local coordinate system of the circle will be directed from
center to points[0] point, and axisY of the local coordinate system will be orthogonal to axisX.

If points set contains three elements, an ellipse with a center in centre point, will contain the following
points: points[0], points[1] and points[2]. The positions of the axes of the local ellipse coordinate system and
the length of ellipse semi-axes will be calculated based on centre, points[0], points[1] and points[2] points,
see Fig. M.3.2.2.

centre

~ -~
~ closed =false -~

Fig. M.3.2.2.

Elliptical arcs are described in Item O.3.4. MbArc Two-Dimensional Elliptical Arc.

If points set is empty, then the lengths of ellipse semi-axes a and b are used as input parameters, and
axisX and axisY axes of the local ellipse coordinate system match with global ellipse coordinate axes.

closed parameter defines whether the curve is cyclically closed. If closed=false, then angle parameter,
which determines opening angle of the elliptical arc in parametric units, must be non-zero.

In a special case when a=b, this method constructs a circle (if closed=true or angle=0) or a circular arc (if
closed= false, and angle>0, and angle<2m).

M.3.3. Constructing Two-Dimensional Curves Based on Control Points

The method
MbResultType
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SplineCurve ( const SArray<MbCartPoint> & points,
bool closed,
MbePlaneType curvelipe,
MbCurve *& result )
constructs a two-dimensional curve of the required type based on a specified set of control points.
Input parameters of the method are as follows:
e points is a set of control points,
* closed is a flag that defines whether the curve is cyclically closed,
* curvelype is a curve type.
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
The method is declared in action_curve.h file.
points parameter contains control points of the curve. closed parameter defines whether the constructed
curve is cyclically closed. curveType parameter defines curve type that determines curve shape. A various
number of control points is required to construct created curves of different types. Table M.3.3.1 shows the
number of control points from points set required to create curveType curve.

Table M.3.3.1.

curvelype Curve type Number of control points
pt_LineSegment Straight line segment 2 points

pt_Arc Circular arc 3 points

pt_Polyline Polygonal line 2 or more points

pt Nurbs NURBS curve 2 or more points
pt_Hermit Hermite spline 2 or more points

pt Bezier Bezier curve 2 or more points
pt_CubicSpline Cubic Spline 2 or more points

A line segment that starts in points[0] and ends in points[1] will be constructed if
curveType=pt_LineSegment. Line segments are described in Item O.3.3. MbLineSegment Two-Dimensional
Straight Line Segment.

A circular arc that starts in points[0], passes through points[1] and ends in points[2] will be constructed if
curvelype=pt Arc and closed=false, see M.3.3.1. If closed=true, then a circle containing points[0],
points[1], and points[2], will be constructed. Circular arc and an elliptical arc are described in Item O.3.4.

MbArc Two-Dimensional Elliptical Arc.

points[0] points[2]
curvelype =pt_Arc
points[1]
Fig. M.3.3.1.
If curveType=pt Polyline, then a polyline containing points[0], points[1], ..., points|n] will be

constructed, see Fig. M.3.3.2. If closed=true, then a cyclically closed polyline containing a segment between
points[0] and points[n] will be constructed. Polylines are described in Item O.3.5. MbPolyline Two-
Dimensional Polyline.
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curvelype = pt Polyline

points|2]
) . points|5] )
points|1] ° points|7]
o e
[ '.
. points[3] points[6]
o o
pomnts(0] points[4]

closed = false

Fig. M.3.3.2.

If curveType=pt Nurbs, then a fourth-order Non-Uniform Rational B-Spline will be constructed, see Fig.
M.3.3.3. spline control points will be determined based on the condition that the spline contains points[0],
points[1],..., points[n]. If closed=true, then a cyclically closed spline will be constructed. NURBS curves are
described in Item O.3.5. MbPolyline Two-Dimensional Polyline.

curvelype = pt_Nurbs points[2]
points[5]

oints[7
points[1] P 7]

points|6]
points[0]

points[4]
closed = false

Fig. M.3.3.3.

If curvelype=pt Hermit, then a compound curve containing smoothly joined third-order Hermit splines
will be constructed. Each third-order Hermit spline will connect adjacent points[i—1] and points[i], see Fig.
M.3.3.4. If closed=true, then a cyclically closed curve containing an Hermit spline between points[0] and
points[n] will be constructed. Compound third-order Hermit splines are described in Item O.3.7. MbHermit
Two-Dimensional Hermite Curve.

curvelype = pt_Hermit points[2]
points|5]

points[1] points|7]

points|6]

points[0] points[3]

points[4]

closed = false

Fig. M.3.3.4.

If curvelype=pt_Bezier, then a compound curve containing smoothly joined third-order Bezier splines
will be constructed. Each third-order Bezier spline will connect adjacent points[i—1] and points[i], see Fig.
M.3.3.5. If closed=true, then a cyclically closed curve containing a Bezier spline between points[0] and
points[n] will be constructed. Compound third-order Bezier splines are described in ItemQ.3.8. MbBezier
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Two-Dimensional Bezier Composite Curve.

curvelype = pt Bezier

points[2]

points[5]

points[1] points[7]

points[6]

points[0] points|3]

points[4]

closed = false

Fig. M.3.3.5.

If curveType=pt_CubicSpline, then a cubic spline containing points[0], points[1], ..., points[n] will be
constructed, see Fig. M.3.3.6. If closed=true, then a cyclically closed curve containing a segment between
points[0] and points[n] will be constructed. Cubic splines are described in Item O.3.9. MbCubicSpline Two-

Dimensional Cubic Spline.

curveType = pt_CubicSpline  poinrs[2]
° points|5]

points[1] _ . pomnis| 7]

) points[6]
points[0] s points|3] \
[ ]

* points[4]
closed = false

Fig. M.3.3.6.

For the purpose of comparison, Fig. M.3.3.7 shows a NURBS curve, a compound Hermite spline, a
compound Bezier spline, and a cubic spline constructed based on the same control points (points[0],
points[1], ..., points[n]) and the curves have the same order.

pt Bezier

pt Hermit

pt_Nurbs pt_CubicSpline

Fig. M.3.3.7.

One can see that the curves have different shapes.

M.3.4. Constructing Two-Dimensional NURBS Curve
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The method
MbResultType
NurbsCurve ( const SArray<MbCartPoint> & points,

const SArray<double> & weights,
size t degree,
const SArray<double> & knots,
bool closed,
MbCurve *& result )
constructs a two-dimensional NURBS curve based on a given set of control points.
Input parameters of the method are as follows:
*  points is a set of control points,
*  weights is a set of weights of control points,
» degree is a curve (B-spline) order,
*  knots is a set of parametric knots (knot vector),
* closed is a flag that defines whether the curve is cyclically closed.

The output parameter of the method is a result constructed body:.

If successful, the method returns rt Success, otherwise it returns an error code from MbResultType
enumeration.

The method is declared in action_curve.h file.

This method constructs a NURBS curve (a curve based on B-splines), such curves are described in Item
0.3.6. MbNurbs Two-Dimensional NURBS-Curve. weights set should correspond to the set of control points
named points. Degree of curve named degree should not exceed the number of control points. closed
parameter defines whether the constructed curve is cyclically closed. knots vector is a non-declining
sequence of real numbers that defines definition domain of curve parameter and curve shape. If closed=false,
then knot vector should contain the number of elements equal to the number of control points plus degree of
curve. If NURBS curve should pass through terminal control points, then the first degree values of knots
vector elements should be equal, and the last degree values of knots vector elements should also should be
equal. If closed=true, then node vector should contain the number of elements equal to the number of control
points plus doubled degree of the curve minus one. Fig. M.3.4.1. shows closed fourth-degree NURBS curve.

degree = 4 closed = true

points[1]

points|3] points[5]

points|6]
L

* points|2]

points[0] o poinis4]

weights={1,1,1,1,1, 1,1, 1} points|7]

knots ={-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11}
Fig. M.3.4.1.

Fig. M.3.4.2. shows non-closed fourth-degree NURBS curve.
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degree = 4 closed = false

poin;s[l] points|3] points|5]
points[6]
ints[0
S points[4]
weights = {1,1,1,1,1,1,1,1} points[7]

knots ={0,0,0,0,1,2,3,4,5,5,5,5}
Fig. M.3.4.2.
Fig. M.3.4.3. shows three closed NURBS curves having different orders constructed based on the same

control points.

closed = true

degree = 3 degree = 5 degree = 7

points|1]
e points|5]
*  points|2]

points[6]

points[0]
e points|7
weights = {1,1,1,1,1,1,1, 1} points| 7}
knots — {-2-1,0.1,2.3,4.5.6,7.8.9, 10}
Jots = {-4-3-2-1.0.1,2.3.4.5.6.7.8.9. 10,11,12}
knots — {-6.-5.-4.-3-2-1.0.1,2.3.4.5.6.7.8.9. 10.11,12,13,14}
Fig. M.3.4.3.

Fig. M.3.4.4 shows three non-closed NURBS curves having various orders constructed based on the same
control points.
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closed =false

degree = 3 degree = 5 degree =7

points|3]

points[2] points|6]
points[0] *
points[4|
points[7]

weights=1{1,1,1,1,1,1,1, 1}
knots = {0,0,0,1,2,3,4,5,6,6,6}
knots = {0,0,0,0,0,1,2,3,4,4,4,4,4}
knots = {0,0,0,0,0,0,0,1,2,2,2,2,2,2,2}

Fig. M.3.4.4.

Fig. M.3.4.5 shows three non-closed fourth-order NURBS curves with various control point weights.

degree = 4 closed = false

points(1] « points[3] points|5]

[ ]
points|2] points[6]

points|0]

points[7]

weights = {1,3,1,3,1.,3,1,1}
weights={1,1,1,1,1,1,1,1}
weights = { 1,8, 8, 1,8,8,1,1}

knots ={0,0,0,0,1,2,3,4.5,5,5,5}

Fig. M.3.4.5.

Fig. M.3.4.6 shows a non-closed third-order NURBS curve, the shape of which matches the circular arc.
The distance between points[0] and points[1] control points is equal to the distance between points[1] and
points[2] control points, and weights[1] weight of the middle curve control point is equal to the weight of the
terminal control points multiplied by half-angle cosine of the arc.
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degree =3 closed = false

weight[2] =1
points|2] points[1]
" weight[1] = cos(a/2)

kmots ={ 0,0,0, 1,1, 1}

o

points|0]
weight|0] = 1

Fig. M.3.4.6.

The method
MbResultType
NurbsCopy ( const MbCurve & curve,

MbCurve *& result )
constructs a NURBS copy of selected two-dimensional curve.

curve original curve is an input parameter of the method.

The output parameter of the method is a result constructed body.

If successful, the method returns rt Success, otherwise it returns an error code from MbResultType
enumeration.

The method is declared in action_curve.h file.

This method constructs a NURBS curve with a shape that is a copy of the original curve. NURBS curves
exactly copies the shape of the original curve for the majority of curve types. If it is impossible to exactly
reproduce the shape of the original curve, then NURBS copy approximates the original curve with an error
less than 0.0001.

M.3.5. Constructing Convex Equilateral Two-Dimensional Polyline

The method
MbResultType
RegularPolygon ( const MbCartPoint & centre,
const MbCartPoint & point,
size_t vertexCount,
bool describe,
MbCurve *& result )
constructs a closed two-dimensional polyline that is a regular polyline inscribed in a designated circle or
circumscribed around such a circle.
Input parameters of the method are as follows:
* centre is a center of the circle circumscribed around an equilateral polygon or or inscribed in it,
*  point is a point on the circle,
* vertexCount is a number of vertexes in a polygon,
* describe is a flag that indicates whether the circle is inscribed or circumscribed.
The output parameter of the method is a result constructed body:.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
The method is declared in action_curve.h file.
centre and point parameters define the circle, in which the polygon with vertexCount vertexes will be
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inscribed (if describe=false) or around which the polygon with vertexCount vertexes will be circumscribed
(if describe=true). The center of the circle will be located in centre point, and the circle will go through
point. vertexCount is a parameter that defines the number of vertexes in a regular polygon. The constructed
curve will be a closed polyline, polylines are described in Item 0.3.5. MbPolyline Two-Dimensional
Polyline. Fig. M.3.5.1 shows a regular polygon inscribed into a circle, and Fig. M.3.5.2 shows a regular
polygon circumscribed around a circle.

] oint
point P
[ ]
centre
vertexCount =15 vertexCount = 8§
describe = false describe =true
Fig. M.3.5.1. Fig. M.3.5.1.

If vertexCount<=1, then this method constructs a circle with a center in centre point passing through
point. If vertexCount=2, then this method constructs a rectangle with opposite sides parallel to the axes of
global coordinates and opposite vertexes located in centre and point (see Fig. M.3.5.3).

point

centre

Fig. M.3.5.3.

M.3.6. Constructing Two-Dimensional Cosine Wave

The method
MbResultType
Cosinusoid ( const MbCartPoint & point0,
const MbCartPoint & point],
const MbCartPoint & point2,
double phase,
double wavelLength,

197



MbCurve *& result )
constructs a cosine wave (two-dimensional harmonic curve).
Input parameters of the method are as follows:
* point0 is an origin of local coordinate system,
* point] is a point located on X axis of the local coordinate system,
e point2 is a point defining Y axis of the local coordinate system,
*  phase is phase shift of the harmonic curve,
*  waveLength is a wavelength of the harmonic curve.
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
The method is declared in action_curve.h file.
point0, point1 and point2 points define the local coordinate system of the cosine wave. point0 will be the
origin of the local coordinate system of the cosine wave, axisX of the local coordinate system will be
directed from point0 to pointl, axisY of the local coordinate system will be orthogonal to axisX and directed
from point0 to point2. point0, pointl and point2 points should not lie along a single stright line. Two-
dimensional cosine waves are described in Item. The amplitude of the cosine wave equals to the length of
point2 projection to axisY. waveLength is a wavelength of the cosine. The number of cosine waves is defined
by the distance between point0 and pointl. phase defines the phase shift of the cosine wave, see Fig.
M.3.6.1.

wavelength

Fig. M.3.6.1.

M.3.7. Constructing Two-Dimensional Compound Curve

The method
MbResultType
CreateContour ( MbCurve & curve,

MbContour *& result )

constructs a compound curve based on an original curve.

curve original curve is an input parameter of the method.

The output parameter of the method is a result constructed body.

If successful, the method returns rt Success, otherwise it returns an error code from MbResultType
enumeration.

The method is declared in action_curve.h file.

The method constructs result compound curve based on the original curve. If the original curve is also
compound, then result curve will include the components of the original curve. Two-dimensional compound
curves are described in Item O.3.17. MbContour Two-Dimensional Contour.

The method
MbResultType
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AddCurveToContour ( MbCurve & curve,
MbContour & contour,
bool toEnd)
modifies a compund curve by adding another curve.
Input parameters of the method are as follows:
* curve is an added curve,
e contour is a modified compound curve,
* toEnd is a flag indicating the point where the curve is added.

The output parameter of the method is contour, the modified curve.

If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.

The method is declared in action_curve.h file.

The method modifies compound curve contour by adding curve at the beginning or at the end of the
compound curve. If toEnd=true, then curve will be added to the end of comtour compound line, if
toEnd=false, then curve will be added to the beginning of contour compound line. Joint points of modified
curve and added curve should be the same, see Fig. M.3.7.1.

S
contour
curve
toEnd = true
Fig. M.3.7.1.

If added curve is also compound, then contour curve will include components of the added curve.

M.3.8. Constructing Surface and Plane Intersection Curves

The method
void
SurfaceSection ( const MbSurface & surface,

const MbPlacement3D & place,
RPArray<MbCurve & result )
constructs surface and plane intersection curves.

Input parameters of the method are as follows:

e surface is a surface,
* place is a local coordinate system of the surface.

The output parameter of the method is result, a set of constructed curves.

The method returns no value.

The method is declared in action_curve.h file.

The method constructs an intersection of surface with XY plane of place local coordinate system. result
curves are constructed in XY plane of place local coordinate system. Fig. M.3.8.1 shows an example of
constructing two-dimensional curves formed by an intersection of a torus surface and XY plane of the local
coordinate system.
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surface place

result[0]

Fig. M.3.8.1.

M.3.9. Constructing Two-Dimensional Face Edge Curve

The method
MbResultType
FaceBoundSegment ( const MbFace & face,
size_t loopIndex,
size t edgelndex,
const MbSurface & surface,
VERSION version,
MbCurve *& result )
projects a face edge onto a surface.
Input parameters of the method are as follows:
* face is the face itself,
* looplndex is a cycle index in the face, where the projected edge is located,
* edgelndex is an edge index in a cycle,
* surface is a projection surface,
* version is a construction version.
The output parameter of the method is a result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
The method is declared in action_curve.h file.
The method projects face edge on surface. Ace edge is defined by loopIndex and edge index in a cycle.
result curve is constructed in parameter space of surface. Fig. M.3.9.1 shows an example of projecting a
face edge on a selected surface.
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face

loopIndex | edgelndex

result

Fig. M.3.9.1.

M.3.10. Projecting a Curve on a Surface

The method
MbResultType
SurfaceBoundContour ( const MbSurface & surface,
const MbCurve3D& curve,
VERSION version,
MbContour *& result )
constructs a two-dimensional curve in parameter space of a surface for 3D curve lying on the surface.
Input parameters of the method are as follows:
e surface is the surface,
e curve is the 3D curve,
* version is a construction version.
The output parameter of the method is result, the constructed compound curve.
If successful, the method returns rt_Success, otherwise it returns an error code from MbResultType
enumeration.
The method is declared in action_curve.h file.
The method projects the 3D curve on surface. The 3D curve should lie on surface. result curve is
constructed in parameter space of surface. Fig. M.3.10.1 shows an example of projecting a 3D curve on a
given surface.
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u

Fig. M.3.10.1.
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M.4. CURVE CONSTRUCTION METHODS

Curves are used as building blocks to construct surfaces. Curves are used to join surfaces with each other.
Curves form a basis to construct faces used in solid body model and wireframe model. In some cases curves
act as reference objects to position other elements of a geometric model. All curves are the MbCurve3D class
inheritors. They are described in Chapter O.4. CURVES. The curves can be constructed by directly calling
the corresponding constructors or using the methods described in this item.

M.4.1. Constructing a Line and a Segment

The method
MbResultType
Line ( const MbCartPoint3D & pointl,
const MbCartPoint3D & point2,
MbCurve3D *& result)
constructs a line based on two non-coincident points.
The method input parameters are:
* pointl is the first point that lies on the line,
* point2 is the second point that lies on the line.
The output parameter of the method is the result constructed curve.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_curve3d.h file.
The parameter pointl defines the start point of the straight line corresponding to the zero parameter
value. The vector beginning in the pointl and ending in the point2 defines the line direction, see Fig.
M.4.1.1. Line derivative has a unit length.

—
e point2
— pointl
Fig. M4.1.1.

Lines are described in Item O.4.2. MbLine3D Straight Line.

The method
MbResultType
Segment ( const MbCartPoint3D & pointl,
const MbCartPoint3D & point2,
MbCurve3D *& result )
constructs a line segment based on two non-coincident points.
The method input parameters are:
* pointl is the segment starting point;
* point2 is the segment end point.
The output parameter of the method is the result constructed curve.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_curve3d.h file.
The parameter pointl defines the starting point of the line segment corresponding to the zero curve
parameter. The parameter point2 defines the end point of the line segment corresponding to the curve
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parameter equal to one, see Fig. M.4.1.2.

point1

= point2

Fig. M 4.1.2.
Line segments are described in Item O.4.3. MbLineSegment3D Straight Line Segment.

M.4.2. Constructing a Circle, an Ellipse And Their Arcs

The method
MbResultType
Arc ( const MbCartPoint3D & centre,

const SArray<MbCartPoint3D> & points,
bool closed,
double angle,
double & a,
double & b,
MbCurve3D *& result )
constructs an elliptic arc. In a special case, the method constructs a circular arc.
The method input parameters are:
* centre is the ellipse center,
* points is a set of points that can be empty,
* closed is a flag that defines whether the curve is cyclically closed,
* angle is an angle that defines the size of the elliptic arc,
* ais the first ellipse semi-axis length (calculated if the points set is non-empty),
*  bis the second semi-axis length (calculated if the points set is non-empty).

The method output parameters are ellipse semi-axes and the result constructed curve.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_curve3d.h file.

The curve can be constructed based on either specified points or scalar parameters. The parameter centre
defines ellipse central point. The points set can be empty, but in this case the a and b ellipse semi-axis
lengths should be non-empty.

If the points set contains two elements, then the centre, the points[0], and the points[1] points determine
the plane, in which the axisX and the axisY of the local ellipse coordinate system are located: the axisX of
the local ellipse coordinate system is directed from the center to the points[0], the axisY of the local ellipse
coordinate system is orthogonal to the axisX and it is directed from the center to the points[1]. The distance
between the centre and points[0] defines the length of the first ellipse semi-axis a, and the distance between
the centre point and the projection of the points[1] to the axisY defines the length of the second ellipse
semi-axis b, see Fig. M.4.2.1.
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, points[0]

centre

closed = false

Fig. M.4.2.1.

Elliptical arcs are described in Item O.4.4. MbArc3D Elliptical Arc.

If the points set is empty, then the lengths of ellipse semi-axes (a and b) are used as input parameters, and
the axisX, axisY, and axisZ of the local ellipse coordinate system coincide with the global ellipse coordinate
axes.

The parameter closed defines whether the curve is cyclically closed. If closed=false, then the parameter
angle, which determines the elliptical arc opening angle in parametric units, should be non-zero.

In a special case when a = b, this method constructs a circle (if closed=true or angle=0) or a circular arc
(if closed=false, and angle >0, and angle < 2m).

M.4.3. Constructing Curves Based on Control Points

The method
MbResultType
SplineCurve ( const SArray<MbCartPoint3D> & points,

bool closed,
MbeSpaceType curvelype,
MbCurve3D *& result )
constructs a curve of the required type based on the specified set of control points.
The method input parameters are:
* points is a set of control points,
* closed is a flag that defines whether the curve is cyclically closed,
* curvelype is a curve type.

The output parameter of the method is the result constructed curve.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_curve3d.h file.

The parameter points contains the curve control points. The parameter closed defines whether
the constructed curve is cyclically closed. The parameter curvelype sets the curve type determining
the curve shape. Various numbers of control points is required to construct curves of different types.
The Table M.4.3.1 shows the number of control points from the given points set required to create
the curveType type curve.

Table M.4.3.1.
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curvelype Curve type Number of control points

pt_LineSegment3D line segment 2 points

pt_Arc3D Circular arc 3 points

pt_Polyline3D Polygonal line 2 or more points
pt Nurbs3D NURBS curve 2 or more points
pt_Hermit3D Hermite spline 2 or more points
pt_Bezier3D Bezier curve 2 or more points
pt_CubicSpline3D Cubic Spline 2 or more points

A line segment starting in points[0] and ending in points[1] will be constructed if
curveType3D=st LineSegment. Line segments are described in Item O.4.3. MbLineSegment3D Straight Line
Segment.

A circular arc starting in points[0], passing through points[1] and ending in points[2] will be constructed
if curveType=pt_Arc and closed=false, see Fig. M.4.3.1. If closed=true, then a circle containing the
points[0], the points[1], and the points[2], will be constructed. Circular and elliptical arcs are described in

Item 0.4.4. MbArc3D Elliptical Arc.

curvelype = st Arc3D

w/ points[0]

points[2] closed = false

points|1]

Fig. M.4.3.1.

If curveType=st Polyline3D, then a polyline containing points[0], points[1],..., points[n] will be
constructed, see Fig. M.4.3.2. If closed=true, then a cyclically closed polyline containing the segment
between the points[0] and the points[n] will be constructed. Polylines are described in Item 0.4.5.
MbPolyline3D Polyline.

points[2] curveType = st Polyline3D
points| 1] *
\/ . points[5] points[7]
points[0] - .
¢ [
points|3] \
. points[6]
closed = false points[4]
Fig. M.4.3.2.

If curveType=st Nurbs3D, then a fourth-order Non-Uniform Rational B-Spline (NURBS) will be
constructed, see Fig. M.4.3.3. Spline control points will be determined based on the condition that the spline
contains points[0], points[1]...., points[#n]. If closed=true, then a cyclically closed spline will be constructed.
NURBS curves are described in Item 0.4.6. MbNurbs3D NURBS-Curve.
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points[2] curvelType = st Nurbs3D

\/ points[1]

_ points|7]
points[0]

points[5]

points|3|

closed = false points[4]

Fig. M.4.3.3.

If curveType=st Hermit3D, then a compound curve containing smoothly joined third-order Hermit
splines will be constructed. Each third-order Hermit spline will join the adjacent points[i—1] and points|[i],
see Fig. M.4.3.4. If closed=true, then a cyclically closed curve containing a Hermit spline between the
points[0] and the points[n] will be constructed. Composite third-order Hermit splines are described in Item
0.4.7. MbHermit3D Hermite Curve.

\‘/ points[1]

points[0]

points|[2] curvelype = st Hermit3D

points[7]

points[5]

points|3]

points[6]
closed = false points[4]

Fig. M.4.3.4.

If curveType=st Bezier3D, then a compound curve containing smoothly joined third-order Bezier splines
will be constructed. Each third-order Bezier spline will join the adjacent points[i—1] and points[], see Fig.
M.4.3.5. If closed=true, then a cyclically closed curve containing a Bezier spline between the points[0] and
the points[#] will be constructed. Compound third-order Bezier splines are described in Item .

\/ points| 1]

points[0]

points[2] curvelype = st Bezier3D

points|5]| points[7]

points|3]

points[6]
closed = false points[4]

Fig. M.4.3.5.

If curveType=st_CubicSpline3D, then a cubic spline containing points[0], points[1],..., points[n] will be
constructed, see Fig. M.4.3.6. If closed=true, then a cyclically closed curve containing the segment between
the points[0] and the points[n] will be constructed. Cubic splines are described in Item_0.4.9.
MbCubicSpline3D Cubic Spline.
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points|2] curvelype = st CubicSpline3D
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points|3|

closed = false points[4]

Fig. M.4.3.6.

For the purpose of comparison, Fig. M.4.3.7 shows a NURBS curve, a compound Hermite spline, a
compound Bezier spline, and a cubic spline constructed based on the same control points (points[0],
points[1], ..., points[#]) and having the same order.

-

st Nurbs3D

st Bezier3D

st Hermit3D

st CubicSpline3D

Fig. M.4.3.7.

You can see that the curves have various shapes.

M.4.4. NURBS Curve Construction

The method
MbResultType
NurbsCurve ( const SArray<MbCartPoint3D> & points,
const SArray<double> & weights,
size t degree,
const SArray<double> & knots,
bool closed,
MbCurve3D *& result )
constructs a NURBS curve based on a given set of control points.
The method input parameters are:
e points is a set of control points,
*  weights is a set of control point weights,
* degree is a curve (B-spline) order,
* knots is a set of parametric knots (knot vector),
* closed is a flag that defines whether the curve is cyclically closed.
The output parameter of the method is the result constructed curve.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_curve3d.h file.
This method constructs a NURBS curve (a curve based on B-splines), NURBS curves are described in
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Item O.4.6. MbNurbs3D NURBS-Curve. The weights set should match the control point set (points). The
curve order named "degree" should not exceed the number of control points. The parameter closed defines
whether the constructed curve is cyclically closed. The knots vector is a non-declining sequence of real
numbers, which determines the curve parameter domain of definition and the curve shape. If closed=false,
then the knot vector should contain the number of elements equal to the sum of the number of control points
and the curve order. If you want the NURBS curve to pass through the terminal control points, then the first
degree elements of knots vector should be equal to each other, and the last degree elements of the knots
vector should also be equal to each other. If closed=true, then the knot vector should contain the number of
elements equal to the number of control points plus doubled curve order and minus one. Fig. M.4.4.1 shows
a closed fourth-order NURBS curve with equal distances between knots.

degree = 4 closed = true

points[2] , points[5]

points[1] «
points[6]
-

points[3] e

points|4]

points[0]

points[7]

weights={1,1,1,1,1,1,1, 1}

fnots = {-3,-2,-1,0,1,2,3,4,5,6,7,8,9, 10,11}

Fig. M.4.4.1.

Fig. M.4.4.2 shows two non-closed fourth-order NURBS curves. The first curve has equal distances
between knots and coincides with the curve part shown in Fig. M.4.4.1. The second curve has equal first
degree knot vector elements and equal last degree knot vector elements.

degree = 4 closed = false

points[2]

points[5]

points[1]
points[6]

points[3]

points[4] ¢

points[0] weights={1,1,1,1,1,1,1,1}
knots = {-3.-2,-1,0,1,2,3,4,5,6,7, 8} points[7]
knots={0,0,0,0,1,2,3,4,5,5,5,5}

Fig. M.4.4.2.

Fig. M.4.4.3 shows three non-closed fourth-order NURBS curves with various weights (weights[2] and
weights[4]) of the control points (points[2] u points[4]).
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degree = 4 closed = false

points[2]

weights={1,1,1,1,1,1,1, 1} points|7]
weights={1,1,2,1,2,1,1, 1}
weights = {1,1,5,1,5,1,1, 1}

Fig. M.4.4.3.

Fig. M.4.4.4 shows three non-closed NURBS curves of various order constructed based on the same
control points.

degree = 3 degree = 7 degree = 5

points|2]

points| 1] points[5]
L]

points|6]
. L ]
points[3]
points[0]
weight={1,1,1,1,1,1,1, 1} points[7]
Fig. M.4.4.4.

Fig. M.4.4.5 shows a non-closed third-order NURBS curve, the shape of which coincides with a circular
arc. The distance between the points[0] and the points[1] control points is equal to the distance between the

points[1] and the points[2] control points, and the weights[1] of the middle curve control point is equal to
the weight of the terminal control points multiplied by the arc half-angle cosine.
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degree = 3 weights[1] = cos(a/2)
points|1]

weights[0] = 1
points[0] *

points[2]
knots = {0,0,0, 1,1, 1} weights[2] = 1

Fig. M.4.4.5.

The method
MbResultType
NurbsCopy ( const MbCurve3D & curve,

MbCurve3D *& result )

constructs a NURBS copy of the given curve.

The original curve is the input parameter of the method.

The output parameter of the method is the result constructed curve.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action curve3d.h file.

This method constructs a NURBS curve with a shape that copies the original curve shape. NURBS copies
completely coincide with the original curves for the majority of curve types. If it is impossible to accurately

reproduce the original curve shape, then the NURBS copy approximates the original curve with an error less
than 0.0001.

M.4.5. Convex Equilateral Polyline Construction

The method
MbResultType
RegularPolygon ( const MbCartPoint3D & centre,
const MbCartPoint3D & point,
const MbVector3D & axisZ,
size t vertexCount,
bool describe,
MbCurve3D *& result )
constructs a closed polyline that is a regular polygon inscribed in the given circle or that circumscribes the
circle.
The method input parameters are:
» centre is the center of the circle that is circumscribed around an equilateral polygon or is inscribed in
it,
* point is a point on the circle,
* axisZ is a vector perpendicular to the circle plane,
* vertexCount is the number of polygon vertexes,
* describe is a flag that indicates whether the circle is inscribed or circumscribed.
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The output parameter of the method is the result constructed curve.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_curve3d.h file.

The centre, point and axisZ parameters define the circle, in which the polygon with vertexCount vertexes
will be inscribed (if describe=false) or around which the polygon with vertexCount vertexes will be
circumscribed (if describe=true). The circle center will be placed in the centre point, the circle will contain
the point, and the circle axis will be parallel to the axisZ vector. vertexCount is the parameter that defines
the number of vertexes in a regular polygon. The constructed curve will be a closed polyline described in
Item O.4.5. MbPolyline3D Polyline. Fig. M.4.5.1 shows a regular polygon inscribed in a circle, and Fig.
M.4.5.2 shows a regular polygon that circumscribes a circle.

axisZ t

centre

point

vertexCount = 5
describe = false

Fig. M.4.5.1.

vertexCount = 8

describe =true

Fig. M.4.5.2.

If vertexCount<=1, then this method constructs a circle with a center in centre point passing through the
point. If vertexCount=2, then this method constructs a polyline with one section, starting in centre and
ending in point.

M.4.6. Spiral Construction

The method
MbResultType
SpiralCurve ( const MbPlacement3D & place,
double radius,
double step,
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MbCurve & lawCurve,
bool spiralAxis,
MbCurve3D *& result )
constructs a spiral with a variable radius or a spiral with a curved axis.
The method input parameters are:
* place is the local coordinate system of the spiral,
*  radius is the spiral radius,
* step is the spiral step,
* lawCurve is a shape-forming two-dimensional curve,
*  spiralAxis is a shape forming mode.

The output parameter of the method is the result constructed curve.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_curve3d.h file.

If spiralAxis=false, then the lawCurve defines how the spiral radius changes. In this particular case the
spiral axis coincides with the axisZ of the local coordinate system (place), the lawCurve will be placed into
the ZX plane of the local spiral coordinate system and it gives the law how the spiral radius changes. The
first coordinate (x) of each two-dimensional point of the lawCurve will be plotted along the axisZ of the
local spiral coordinate system, the second coordinate () of each two-dimensional point of the lawCurve will
be plotted along the axisX of the local spiral coordinate system, see Fig. M.4.6.1.

spiralAxis = false

Fig. M.4.6.1.

The second coordinate (1) of the two-dimensional lawCurve will define the spiral radius as a function of
the first coordinate (x) of the curve. The second coordinate (y) of each point of the two-dimensional
lawCurve should be positive as the lawCurve should not cross the axisZ. Spirals with a variable radius are
described in Item O.4.15. MbCurveSpiral Variable Radius Spiral. The step parameter gives the spiral step,
and the radius parameter is not used.

If spiralAxis=true, then the lawCurve defines the spiral axis. In this case, the lawCurve will lie in the ZX
plane of the local coordinate system and it will circumscribe about the spiral axis. The first coordinate (x) of
each two-dimensional point of the lawCurve will be plotted along the axisZ of the local spiral coordinate
system, the second coordinate (y) of each two-dimensional point of the lawCurve will be plotted along the
axisX of the local spiral coordinate system, see Fig. M.4.6.2.
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spiralAxis = true

lawCurve

radius

Fig. M.4.6.2.

To avoid spiral self-intersections, the radius of curvature of two-dimensional lawCurve should exceed the
spiral radius in each point. Spirals with curvilinear axes are described in Item 0.4.16. MbCrookedSpiral
Spiral with Curved Planar Axis. The step parameter defines the spiral step along its axis.

The method
MbResultType
SpiralCurve ( const MbCartPoint3D & point0,
const MbCartPoint3D & pointl,
const MbCartPoint3D & point2,
double radius,
double step,
double angle,
MbCurve * lawCurve,
bool spiralAxis,
MbCurve3D *& result )
constructs a conical spiral, or a spiral with variable radius, or a spiral with a curvilinear axis.
The method input parameters are:
* pointO is the origin of the spiral local coordinate system,
e pointl is a point located on the Z axis of the spiral local coordinate system,
* point?2 is a point defining the X axis of the spiral local coordinate system,
*  radius is the spiral radius,
* step is the spiral step,
* angle is the angle of the conical spiral,
* lawCurve is a shape-forming two-dimensional curve, this parameter can be zero,
*  spiralAxis is a shape forming mode.
The output parameter of the method is the result constructed curve.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
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The method is declared in the action_curve3d.h file.

Point0, pointl and point2 define the local coordinate system of the spiral. The point0 will be the origin
of the spiral local coordinate system, axisZ of the local coordinate system will be directed from peoint0 to
pointl, axisX of the local coordinate system will be orthogonal to axisZ and directed from pointO to the
point2. The point0, the point] and the point2 should not coincide or lie along a line.

If lawCurve=0, then the method will construct a conical spiral with axisZ of the local coordinate system,
step as the spiral step, and angle as the cone angle. The radius in the beginning of the spiral will be equal to
radius, see Fig. M.4.6.3.

step « point2

angle

radius

pointl

lowCurve =0

Fig. M.4.6.3.

If angle=0, then a cylindrical spiral will be constructed. spiralAxis will not be used.

If lawCurve is not equal to zero and spiralAxis=false, then the method will use the procedure described
above to construct a spiral with a variable radius in the local coordinate system defined by the point0, pointl
and point2, shown in Fig. M.4.6.1. The lawCurve parameter defines how the spiral radius changes.

If lawCurve is not equal to zero and spiralAxis=true, then the method will use the procedure described
above to construct a spiral with a curved axis in the local coordinate system defined by the point0, pointl
and point2, as shown in Fig. M.4.6.2. lawCurve parameter defines the spiral axis.

M.4.7. Compound Curve Construction

The method
MbResultType
CreateContour ( MbCurve3D & curve,

MbContour3D *& result )

constructs a compound curve based on one original curve.

The original curve is the input parameter of the method.

The output parameter of the method is the result constructed curve.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_curve3d.h file.

The method constructs the result compound curve based on the original curve. If the original curve is
also compound, then the result curve will include the components of the original curve. Compound curves
are described in Item O.4.18. MbContour3D Contour.

The method
MbResultType
AddCurveToContour ( MbCurve3D & curve,
MbCurve3D & contour,
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bool toEnd )
modifies the compound curve by adding other curve.
The method input parameters are:

e curve is an added curve,
e contour is a modified compound curve,

* toEnd is a flag indicating the place where the curve is added.

The output parameter of the method is the contour, the modified curve.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_curve.h file.

The method modifies the compound curve contour by adding the curve at the beginning or at the end of
the compound curve. If toEnd=true, then the curve will be added to the end of contour compound curve, if
toEnd=false, then the curve will be added to the beginning of contour compound curve. Modified and added
curve joint points should coincide, see Fig. M.4.7.1.

toEnd = true
curve

contour

Fig. M.4.7.1.

If the added curve is also compound, then the contour curve will include the components of the added
curve.

The method
MbResultType
CreateContours ( RPArray<MbCurve3D> & curves,

double epsilon,
RPArray<MbContour3D> & result,
bool onlySmoothConnected = false )
constructs compound curves from a set of original curves.
The method input parameters are:

* curves is a set of original curves,

* epsilon is a matching radius for joining the original curves,

*  onlySmoothConnected is a flag that indicates using only smooth joining of original curves.

The output parameter of the method is result, the constructed curve set.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_curve3d.h file.

The method creates compound curves on the basis of original curves and adds them to the result set. If
onlySmoothConnected=true, then all the constructed compound curves will be smooth, i.e. the curves will
have similarly directed tangent lines in joining points, but the derivative by length in the joining points may
change discontinuously. If any original curve in the curves set is compound, then the components of such
original curve will be added to the resulting compound curve.

M.4.8. Wireframe Construction

The method
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MbResultType
WireFrame ( const MbCurve3D & curve,
const MbName & name,
SimpleName mainName,
MbWireFrame *& result )
creates a wireframe based on a curve.
The method input parameters are:
* curve is the original curve,
* name is a curve name,
* mainName is the main wireframe name.
The output parameter of the method is the result constructed wireframe.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_curve3d.h file.
The method creates an MbEdge, an edge that serves as result wireframe element, on the basis of the
curve. MbWireFrame wireframe is described in Item O.8.3. MbWireFrame Wireframe.

The method
MbResultType
WireFrame ( const RPArray<MbCurve3D> & curves,

const RPArray<MbName> & names,
SimpleName mainName,
MbWireFrame *& result )
creates a wireframe based on a curve set.
The method input parameters are:

e curves is a set of curves,

* names is a set of curve names,

* mainName is the main wireframe name.

The output parameter of the method is the result constructed wireframe.

If successful, the method returns rt Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_curve3d.h file.

The method creates an edge (MbEdge) on the basis of each curve of the curve set. The result wireframe
is then created from these edges. The wireframe edges are joined in vertexes, each edge and vertex have their
own attributes. The wireframe provides information about the edges joined in shared vertexes, the wireframe
also has attributes and a construction log. MbWireFrame wireframe is described in Item O.8.3.
MbWireFrame Wireframe.

M.4.9. Curve Projection onto a Surface

The method
MbResultType
CurveProjection ( const MbSurface & surface,
const MbCurve3D & curve,
MbVector3D * direction,
bool createExact,
bool truncateByBounds,
RPArray<MbCurve3D> & result,
VERSION version = Math::DefaultMathVersion() );
projects a curve onto the selected surface using the normal projection mehod or parallel projection method.
The method input parameters are:
» surface is a surface, to which the curve is projected,
* curve is a projected curve,
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» direction is a projection direction vector (this value can equal zero),

* createExact is a constructed curve accuracy flag,

* truncateByBounds is a flag that indicates whether the projections are truncated by surface
boundaries,

* version is a construction version.

The output parameter of the method is result, the constructed curve set.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action_surface curve.h file.

If direction=0, then the method creates a normal projection of the curve onto the surface, wherein the
vector constructed from the projection point to the corresponding point of the projected curve is directed
normally to the surface.

If the direction vector is non-zero, then the method creates a parallel projection of the curve onto the
surface, wherein the vector constructed from the projection point to the corresponding point of the projected
curve of the projected curve is parallel to the direction vector.

The result curves lie on the MbSurfaceCurve surface described in Item 0.4.20. MbSurfaceCurve Curve
on Surface. If createExact=false, then in the general case the two-dimensional curves among the curves on
the result surface will be spline curves passing through the finite number of points that are projections of
particular points of the projected curve. If createExact=true, then in the general case the two-dimensional
curves among the curves on the result surface will be MbProjCurve projection curves, which accurately
describe the projections of spatial curves onto the surface. In special cases, the result curves are an accurate
projection of the curve. If the direction vector is defined, then it is considered that createExact=false.

If truncateByBounds=false, then the result curves will be located inside the parametric rectangle, which
covers the definition domain of surface parameters. If the definition domain of surface parameters does not
coincide with its outline rectangle, then the result curves may go beyond the surface boundaries.

If truncateByBounds=true, then the result curves completely lie within the surface. Fig. M.4.9.1 shows a
normal curve projection onto a surface.

surface curve

direction= 0

result[0]

truncateByBounds = true

Fig. M.4.9.1.

If truncateByBounds=false, then the result curves may go beyond the surface boundaries. Fig. M.4.9.2
shows a parallel curve projection onto a surface.
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direction

result[0]

truncateByBounds = false

Fig. M.4.9.2.

M.4.10. Construction of Surface Intersection Curves

The method
MbResultType
IntersectionCurve ( const MbSurface & surfacel,

const MbSurface & surface2,
const MbSNameMaker & names,
MbWireFrame *& result )
constructs the curves formed by intersection of two surfaces.
The method input parameters are:

e surfacel is the first surface,

e surface2 is the second surface,

* names is a namer for the construction result elements.

The output parameter of the method is the result constructed wireframe.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action surface curve.h file.

Two surfaces can intersect so that the intersection would form several curves. This method constructs all
intersection curves and converts them to a wireframe. The wireframe curves are MbSurfacelntersectionCurve
surface intersection curves described in Item 0.4.24. MbSurfacelntersectionCurve Surface Intersection
Curve. Names parameter defines the names of edges of the constructed wireframe. Fig. M.4.10.1 shows the
surface intersection result.
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Fig. M.4.10.1.

M.4.11. Silhouette Curve Construction

The method
MbResultType
SilhouetteCurve ( const MbFace & face,

const MbVector3D & eye,
bool perspective,
RPArray<MbCurve3D> & result )
constructs the silhouette curves of a face using parallel or perspective projection.
The method input parameters are:

e face is the face itself,

e eye is a view direction or a viewpoint vector,

*  perspective is a perspective projection flag.

The output parameter of the method is result, the constructed curve set.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action _surface curve.h file.

Silhouette curves lie on the face and separate the face part visible from the viewpoint and the invisible
part. There can be several silhouette curves for one face. The set of silhouette curves varies for different view
directions and various viewpoints.

If perspective=false, then the eye vector determines the direction of view that is constant for all face
points. If perspective=true, then the eye vector determines the viewpoint position instead of the view
direction, because the view direction can vary for various face points. If perspective=false, then the
silhouette curves are constructed for parallel face projections. If perspective=true, then the silhouette curves
are constructed for perspective face projections.

In special cases silhouette curves may coincide with the face borders. Silhouette curves that coincide with the
face borders are not constructed because they would coincide with the face edges.

Fig. M.4.11.1 shows an example of silhouette curves constructed for parallel face projection.
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perspective = false =
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Fig. M.4.11.1.

Fig. M.4.11.2 shows an example of silhouette curves constructed using a perspective face projection with
a viewpoint close to the face.

"—'?w';%}f'
435

Fig. M.4.11.2.

Silhouette curves are described in Item O.4.21. MbSilhouetteCurve Silhouette Curve.

The method
MbResultType
SilhouetteCurve ( const MbFace & face,

const MbAxis3D & axis,
RPArray<MbCurve3D> & result )
constructs silhouette curves of a face rotating along the selected axis.
The method input parameters are:
e face is the face itself,
* axis is a rotation axis.

The output parameter of the method is result, the constructed curve set.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action_surface curve.h file.

It is required to construct a set of silhouette face rotation curves to construct a turning section. When a
face rotates along an axis, it may be considered that the view direction for the face points is orthogonal to the
rotation axis and the segment joining the face point and the projection of this point onto the axis.

In special cases, the silhouette curves may coincide with the edge faces. Silhouette curves that coincide
with the face borders are not constructed because they would coincide with the face edges.

Fig. M.4.11.3 shows an example of silhouette curves formed by rotating a face around an axis.

221



face

result[0]

Fig. M.4.11.3.

M.4.12. Constructing a Curve Mating Curve

The method
MbResultType
FilletCurve ( const MbCurve3D & curvel,

double & 11,

double & wl,

const MbCurve3D & curve2,

double & 72,

double & w2,

double & radius,

bool sense,

bool & unchanged,

const MbeConnectingType type,

const MbSNameMaker & names,

MbElementarySurface *& surface,

MbWireFrame*& result )
constructs a curve that smoothly joins two curves and lies on a cylindrical surface tangential to the mating
curves.

The method input parameters are:

e curvel is the first curve,

* ¢l is the first curve mating point parameter,

*  wl is the first curve end point parameter,

* curve2 is the second curve,

* 12 is the second curve mating parameter,

* w2 is the second curve end point parameter,

*  radius is a mating radius,

* sense is a direction of the constructed mating,
*  fype is a mating type,

* names is a constructed mating namer.

The output parameters of the method are as follows: result is the constructed wireframe, surface is a
cylindrical surface tangential to the curves, 71 and #2 are the curve mating point parameters, wl and w2 are
the end point parameters of the mated curves, radius is the mating radius, unchanged is a flag indicating a
special case of the constructed mating.
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If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action_surface curve.h file.

The method provides five ways of mating two curves. If fype=ft Fillet, then the method constructs a
curve on a cylindrical surface (a circle arc in a special case) tangential to the curvel and curve2 in mating
points. If type=ft Fillet, then the radius can be both an input and an output parameter. If radius is an input
parameter (more than zero), then the parameters ¢1 and #2 will be calculated, if radius is not specified (it is
equal to zero), then ¢1 and 2 should be input parameters. This method will return the cylindric surface, on
which the mating curve will be constructed, as an output parameter.

If curvel and curve2 liec on the common surface, then they can be mated by a curve formed by
intersection of the common surface with a cylindrical surface. In this case, fype=ft OnSurface. The radius
parameter can set the radius of the cylindrical surface.

If type=tt_Spline, then the method constructs a NURBS curve mating curvel in a point with 71 parameter
and curve2 in a point with 72 parameter. The radius can define the tension of the NURBS curve in the
mating points.

If type=ft Double, then curvel and curve2 will be mated by two arcs having radius radius. The mating
points will be located on the curve ends. If necessary, it is possible to insert a line segment between the arcs.

If #ype=ft Bridge, then the method mates curvel and curve2 by MbBridgeCurve3D joining curve
described in Item 0.4.17. MbBridgeCurve3D Joining Curve. A joining curve is a cubic Hermite spline
constructed based on two extreme points and curve derivatives in these points. In this case, the radius
parameter is not used, rather ¢1 and #2 should be used as input parameter.

The parameter ¢1 defines the point of curvel parametric domain, wherein the curvel mates with the
constructed curve. If curvel is cyclically closed, then the parameter w1l should coincide with ¢1. For a non-
closed curve, the parameter wl combined with ¢1 defines the section of the curvel that smoothly transforms
into the constructed curve. The parameters ¢1 and w1 can be used to trim the curvel.

The parameter 2 defines the point of curve2 parametric domain, wherein the curve2 mates with the
constructed curve. If curve?2 is cyclically closed, then the parameter w2 should coincide with 2. For a non-
closed curve, the parameter w2 combined with #2 defines the section of the curve2 that smoothly transforms
into the constructed curve. The parameters 72 and w2 can be used to trim the curve?2.

The parameter radius defines the radius of the mating curve (for the cases when #ype is not equal to
ft Spline and ft Bridge values). If radius is a positive value, then it is used as an input parameter. In this
case, the values of the 71 and 2 mating point parameters will be found. If radius is less than or equal to zero,
then it is used as an output parameter. In this case, it is required to specify the #1 and #2 point parameter
values of the mated curves.

The parameter sense defines the direction of the constructed curve. If sense=true, then the constructed
curve will be directed from curvel to curve2. If sense=false, then the constructed curve will be directed
from curve?2 to curvel.

The parameter unchanged informs about the changes in the constructed curve. If unchanged=true, then a
circle arc having the set radius was constructed. In general case, the method returns value unchanged=false.

Names parameter defines the names of edges of the constructed wireframe.

Fig. M.4.12.1 shows an example of curve filleting for the type=ft Fillet.
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type = ft_Fillet

Fig. M.4.12.1.
Fig. M.4.12.2 shows an example of curve filleting for the type=ft Double.

result
curvel radius

radius curve?

type = ft Double

Fig M 4.12.2.
Fig. M.4.12.3 shows an example of curve filleting for the type=ft OnSurface.
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---- . surface

Fig. M.4.12.3.

The FilletCurve method adds the MbConnectingCurveCreator constructor containing all data required to
construct the mating, to a log of a newly constructed wireframe. The MbConnectingCurveCreator
constructor is declared in the cr_duplication_solid.h file.
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M.5. SURFACE CONSTRUCTION METHODS

Surfaces describe the shape of simulated objects. Faces are constructed on the basis of surfaces that form
solid bodies. In some cases surfaces act as reference objects to position other geometric model elements. All
surface are MbSurface class inheritors, they are described in Chapter O.5. SURFACES. The surfaces can be
constructed by directly calling the corresponding constructors or using the methods described in this item.

M.5.1. Elementary Surface Construction

The method
MbResultType
ElementarySurface ( const MbCartPoint3D & pointO0,

const MbCartPoint3D & pointl,
const MbCartPoint3D & point2,
MbeSpaceType surfaceTipe,
MbSurface *& result )
constructs an elementary surface.
The method input parameters are:
* point0 is a point that defines the origin of the local surface coordinate system,
* pointl is a point that defines the direction of local coordinate system axis and the surface radius,
* point2 is a point that defines the direction of local coordinate system axis,
* surfaceType is a type of the surface.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

The surfaceType parameter defines the created surface type. point0, pointl and point2 are the control
points that define the local coordinate system and the elementary surface dimensions. pointO defines the
local coordinate system origin. The Table M.5.1.1 shows surface type, local coordinate system axis and a
value defined by pointl to create surfacelype surface.

Table M.5.1.1.

surfacelype surface type pointl defines the axis
st Plane plane axisX

st CylinderSurface cylindrical surface axisZ height

st ConeSurface conical surface axisZ height

st SphereSurface spherical surface axisZ

st TorusSurface toroidal surface axisX larger radius

pointl defines the cylinder height, cone height, or larger torus radius. peint2 defines the cylinder radius,
cone radius and angle, sphere radius, and smaller torus radius.

When the surface is constructed, point0, pointl and poeint2 define the local coordinate system of the
surface with the origin in point0. axisX of the local surface coordinate system is directed from point0 to
pointl, axisY of the local surface coordinate system is orthogonal to axisX and directed towards point2. The
first parameter domain of definition is equal to doubled distance between point0 and peintl. The first
parameter domain of definition is equal to doubled distance between pointO and projection to axisY of
point2, see Fig. M.5.1.1.
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Fig. M.5.1.1.

When a cylindrical surface is constructed, point0 defines the center of the lower cylinder base, which
serves as the local coordinate system origin. pointl defines the center of the upper cylinder base. axisZ of
the local surface coordinate system is directed from point0 to pointl. point2 along with other points defines
the plane of axisX and axisZ of the local surface coordinate system. The distance between point0 and
point1 defines the cylindric surface height, the distance from axisZ to point[2] defines the cylindric surface
radius, see Fig. M.5.1.2.

Fig. M.5.1.2.

Cylindrical surfaces are described in Item O.5.3. MbCylinderSurface Cylindrical Surface.

When a conical surface is constructed, point0 defines the cone vertex, which serves as the local
coordinate system origin. pointl defines the cone base center and axisZ of the local coordinate system of the
cone. point2 along with other points defines the plane of axisX and axisZ of the local surface coordinate
system. The distance between point0 and point] defines the height of the conical surface. point2 defines the
cone angle if point2 lies on the conical surface, see Fig. M.5.1.3.
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Fig. M.5.1.3.

Conical surfaces are described in Item O.5.4. MbConeSurface Conical Surface.

When a spherical surface is constructed, point0 defines the center of the sphere, which serves as the local
coordinate system origin. axisZ of the local surface coordinate system is directed from point0O to pointl.
point2 along with other points defines the plane of axisX and axisZ of the local surface coordinate system.
The distance between point0 and point2 defines the spherical surface radius, see Fig. M.5.1.4.

Fig. M.5.1.4.

Spherical surfaces are described in Item O.5.5. MbSphereSurface Spherical Surface.

When a toroidal surface is constructed, point0O defines the center of the torus, which serves as the local
coordinate system origin. axisX of the surface local coordinate system is directed from point0 to pointl.
point2 along with previous points defines the plane of axisX and axisZ of the local surface coordinate
system. The distance between point0 and pointl points defines the larger torus radius; the distance between
pointl and point2 defines the smaller torus radius, see Fig. M.5.1.5.
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Fig. M.5.1.5.

Torus surfaces are described in Item O.5.6. MbTorusSurface Toroidal Surface.
The test.exe application constructs an elementary surface based on the given points using "Create-
>Surface->Elementary->" menu command.

M.5.2. NURBS Surface Construction

The method
MbResultType
SplineSurface ( const MbCartPoint3D & pUMinVMin,

const MbCartPoint3D & pUMaxVMin,
const MbCartPoint3D & pUMaxVMax,
const MbCartPoint3D & pUMinVMax,
size t uCount,
size_t vCount,
size_tuDegree,
size t vDegree,
MbSurface *& result)
constructs a flat NURBS surface based on corner control points.
The method input parameters are:
e pUMinVMin is the lower left corner surface point,
* pUMaxVMin is the lower right corner surface point,
* pUMaxVMax is the upper right corner surface point,
* pUMinVMax is the upper right corner surface point,
* uCount is a number of control points along the first parameter (in horizontal direction),
* uCount is a number of control points along the second parameter (in vertical direction),
* uDegree is a B-spline degree along the first parameter,
* vDegree is a B-spline degree along the second parameter,

The output parameter of the method is the result constructed surface.

If successful, the method returns rt Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

This method constructs a NURBS surface, the control points of which are located in the nodes of four-
corner table with uCount columns and vCount lines. The surface B-spline degree along the first parameter is
uDegree, and the surface B-spline degree along the second parameter is vDegree. The surface control points
will be calculated based on the equidistant condition and coincidence of corner points with pUMinVMin,
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pUMaxVMin, pUMaxVMax, pUMinVMax, see Fig. M.5.2.1.

pUMinVMax

pUMaxVMax
uDegree = 4 uCount = 8

vDegree = 4 vCount =5

pUMinVMin pUMaxVMin

Fig. M.5.2.1.

The weights of all control points are equal to one. The constructed surface is designed to be further
modified. The method parameters should satisfy the following inequalities: uCount>uDegree and
vCount>vDegree. NURBS surfaces are described in Item O.5.22. MbSplineSurface NURBS Surface.

The method
MbResultType
SplineSurface ( const SArray<MbCartPoint3D> & points,

const SArray<double> & weights,
size t uCount,

size t vCount,

size_tuDegree,

const SArray<double> & uKnots,
bool uClosed,

size_t vDegree,

const SArray<double> & vKnots,
bool vClosed,

MbSurface *& result)

constructs a NURBS surface based on control points and their weights.
The method input parameters are:

points is a set of control points that can be represented as vCount lines that have uCount points in
each line,

weights is a set of control point weights consistent with the set of control points,

uCount is a number of control points along the first parameter (in each line),

uCount is a number of control points along the second parameter (number of lines),

uDegree is a B-spline degree along the first parameter,

uKnots is a knot vector of the first parameter,

uClosed is a parameter that defines whether the surface is closed along the first parameter,
vDegree is a B-spline degree along the second parameter,

vKnots is a knot vector of the second parameter,

vClosed is a parameter that defines whether the surface is closed along the second parameter,

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

This method constructs a NURBS surface with points as control points. The control points of the points
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set will be conditionally split into lines and columns. Each line will contain uCount control points from the
points set, and the total number of lines will be equal to vCount. Therefore, the points set will contain
uCountvCount control points. The surface B-spline degree along the first parameter is uDegree, and the
surface B-spline degree along the second parameter is vDegree. The method parameters should satisfy the
following inequalities: uCount>uDegree and vCount>vDegree. NURBS surfaces are described in Item
0.5.22. MbSplineSurface NURBS Surface.

The sets weights, uKnots, vKnots can be empty.

If the weights set is not empty, then it should be aligned with the points control point set.

If the uKnots and vKnots sets are not empty, then they should contain a specific number of elements: for
uClosed=false, the number of elements in the uKnots vector should be equal to uCount+uDegree; for
uClosed=true, the number of elements in the uKnots vector should be equal to uCount+2uDegree—1; for
vClosed=false, the number of elements in the vKnots vector should be equal to vCount+vDegree; for
vClosed=true, the number of elements in the vKnots vector should be equal to vCount+2vDegree—1. Fig.
M.5.2.2 shows the positions of control points to construct a torus-shaped spline surface.

43
uCount =8

vCount = 8

points

weights = 1.0

weights = cos(n/4)
31

Fig. M.5.2.2.

Fig. M.5.2.3 shows a torus-shaped spline surface constructed based on the control points specified above.
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uCount =8
vCount = §

uDegree = 3
vDegree = 3

uKnots = {-1,0,0,1,1,2,2,3,3,4,4,5,5} uClosed = true
vKnots = {-1,0,0,1,1,2,2,3,3,4,4,5,5} vClosed = true
Fig. M.5.2.3.

Below you can find the C++ code that constructs a torus-shaped spline surface using this method (the
torus center coincides with the global coordinate system origin, and the torus axis is directed along the global
axis 7).

I
void AddTorusPoints( double r, double z, SArray<MbCartPoint3D> & points, double w, SArray<double> & weights )

{
MbCartPoint3D p(r, 0.0, z );
MbVector3D toX( 1.0, 0.0, 0.0 ), toY( 0.0, 1.0, 0.0 );
double wi( w ), wA=w * ::cos( M_PI 4);
points.Add( p ); weights.Add( wl);
p.Add( toY, r); points.Add( p ); weights.Add( wA);
p-Add( toX,-r); points.Add( p ); weights.Add( wl);
p-Add( toX,-r ); points.Add( p ); weights.Add( wA );
p.Add( toY,-r); points.Add( p ); weights.Add( wl);
p-Add( toY,-r); points.Add( p ); weights.Add( wA );
p-Add( toX, r); points.Add( p ); weights.Add( wl );
p-Add( toX, r); points.Add( p ); weights.Add( wA );
}
I
void GetTorusPoints( double majorR, double minorR, SArray<MbCartPoint3D> & points, SArray<double> & weights )

double zLavel( 0.0 );
double wO( 1.0 ), wA =::cos( M_PI 4);
::AddTorusPoints( majorR - minorR, zLavel, points, w0, weights );
::AddTorusPoints( majorR - minorR,-minorR, points, wA, weights );
::AddTorusPoints( majorR ,-minorR, points, w0, weights );
::AddTorusPoints( majorR + minorR,-minorR, points, wA, weights );
::AddTorusPoints( majorR + minorR, zLavel, points, w0, weights );
::AddTorusPoints( majorR + minorR, minorR, points, wA, weights );
::AddTorusPoints( majorR , minorR, points, w0, weights );
::AddTorusPoints( majorR - minorR, minorR, points, wA, weights );
}
/]
void GetTorusKnots( double tBeg, double tEnd, SArray<double> & knots )

double dt = ( tEnd - tBeg ) / 4.0;
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double t =tBeg - dt; knots.Add(t);

t=tBeg; knots.Add(t); knots.Add(t);
t+=dt; knots.Add(t); knots.Add(t);
t+=dt; knots.Add(t); knots.Add(t);
t+=dt; knots.Add(t); knots.Add(t);
t=tEnd; knots.Add(t); knots.Add(t);
t+=dt; knots.Add(t); knots.Add(t);
}
/]

MbSurface * CreateTorusSurface( double majorR, double minorR )
f

i

MbSurface * result( NULL );

MbResultType res( rt_Error );

if (majorR > METRIC_NEAR && majorR > minorR - EPSILON ) {
SArray<MbCartPoint3D> points( 64, 1 );
SArray<double> weights( 64, 1 );
SArray<double> uKnots( 13, 1 );
SArray<double> vKnots( 13, 1);
size tuDegree( 3 ), vDegree( 3 );
size_t uCount( 8 ), vCount( 8 );
bool uClosed( true ), vClosed( true );
::GetTorusPoints( majorR, minorR, points, weights );
::GetTorusKnots( 0.0, 4.0, uKnots );
::GetTorusKnots( -2.0, 2.0, vKnots );
res = ::SplineSurface( points, weights, uCount, vCount, uDegree, uKnots, uClosed, vDegree, vKnots, vClosed, result );

}

return ( res ==rt_Success ) ? result : NULL;
¥
The method

MbResultType

NurbsSurface ( const MbSurface & surface,
VERSION version,
MbSurface *& result )

constructs a NURBS copy of the given surface.

The method input parameters are:

* surface is an original surface,
* version is a construction version.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

This method constructs a NURBS surface with a shape that copies the original surface shape. NURBS
surfaces are described in Item 0.5.22. MbSplineSurface NURBS Surface. NURBS surfaces completely
coincide with the original curves for the majority of surface types. If it is impossible to accurately reproduce
the original surface shape, then the NURBS copy approximates the original surface with an error less than
0.0001.

If the original surface is an MbCurveBoundedSurface with arbitrary bounds described in Item O.5.27.
MbCurveBoundedSurface Surface with Arbitrary Borders, then this method constructs a surface with
arbitrary boundaries, wherein the NURBS copy of the base surface of the original surface will be used as a
base surface.

M.5.3. Construction of Extrusion Surface

The method
MbResultType
ExtrusionSurface (MbCurve3D & curve,
const MbVector3D & direction,
MbSurface*& result)
constructs an extrusion surface.
The method input parameters are:
* curve is a generatrix curve,
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* direction is a vector defining the extrusion direction and length.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration. The method is declared in the action_surface.h file.

Extrusion surfaces belong to the type of sliding surfaces which are constructed by moving a generatrix
along a guiding curve. An extrusion surface is formed by moving the generatrix along the segment, the
direction and length of which are defined by the direction vector. Extrusion surfaces are described in Item
0.5.7. MbExtrusionSurface Extrusion Surface. Fig. M.5.3.1 shows a surface constructed by extruding the
curve along the given vector.

direction ;

Fig. M.5.3.1.

M.5.4. Construction of Revolution Surface

The method
MbResultType
RevolutionSurface (MbCurve3D & curve,

const MbCartPoint3D & origin,

const MbVector3D & axis,

double angle,

MbSurface *& result )
constructs a revolution surface.

The method input parameters are:

* curve is a generatrix curve,

* origin is a point on the revolution axis,
e axis is a direction of the revolution axis,
* angle is a revolution angle.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

Revolution surfaces belong to the type of sliding surfaces which are constructed by moving a generatrix
along a guiding curve. A revolution surface is formed by moving the generatrix along a circle arc, wherein
the center is located in the origin point, the axis is parallel to the axis vector, and the opening angle is equal
to angle value. Revolution surfaces are described in Item O.5.8. MbRevolutionSurface Revolution Surface.
Fig. M.5.4.1 shows a surface constructed by rotation of a curve around an axis for the given angle.
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Fig. M.5.4.1.

M.5.5. Sweep Surface Construction

The method
MbResultType
ExpansionSurface ( MbCurve3D & curve,
MbCurve3D & spine,
MbSurface *& result )
constructs a translation surface.
The method input parameters are:
* curve is a generatrix curve,
* spine is a guiding curve.
The output parameter of the method is the result constructed surface.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_surface.h file.
Sweep surfaces belong to the type of sliding surfaces which are constructed by moving a generatrix along
a guiding curve. Translation surfaces are constructed by plane-parallel motion of the generatrix along the
guiding curve. Sliding surfaces are described in Item 0.5.9. MbExpansionSurface Motion Surface. Fig.
M.5.5.1 shows a surface constructed by plane-parallel movement of the generatrix along the guiding curve.

235



spine

curve

Fig. M.5.5.1.

The method
MbResultType
EvolutionSurface (MbCurve3D & curve,
MbCurve3D & spine,
MbSurface *& result )
constructs a kinematic surface.
The method input parameters are:
* curve is a generatrix curve,
* spine is a guiding curve.
The output parameter of the method is the result constructed surface.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_surface.h file.
Kinematic surface is constructed by movement of curve generatrix along spine guiding curve. Kinematic
surfaces are described in Item O.5.11. MbEvolutionSurface Swept Surface. Fig. M.5.5.2 shows a kinematic
surface constructed by sweeping of a generatrix along a guiding curve.
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Fig. M.5.5.2.

The method
MbResultType
SpiralSurface ( MbCurve3D & curve,

const MbSurface & point0,
const MbSurface & pointl,
const MbSurface & point2,
double step,
MbSurface *& result )
constructs a spiral surface.
The method input parameters are:
* curve is a generatrix curve,
* point0 is the origin of the local coordinate system,
* pointl is a point located on the Z axis of the local coordinate system,
* pointl is a point located in the X axis direction of the local coordinate system,
* step is a spiral step.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

A spiral surface is a special case of the kinematic surface described above. It is formed by moving the
generatrix curve along a cylindrical spiral. point0, pointl and point2 are the control points that define the
local coordinate system and the spiral length. pointO defines the local coordinate system origin. axisZ of the
local spiral coordinate system is directed from pointO to pointl. point2 along with other points defines the
plane of axisX and axisZ of the local spiral coordinate system. The distance between point0 and pointl
defines the height of the spiral. The sfep parameter defines the spiral step. Spiral surfaces are described in
Item O.5.10. MbSpiralSurface Spiral Surface. Fig. M.5.5.3 shows a spiral surface.
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Fig. M.5.5.3.

M.5.6. Surface Construction Based on a Family of Curves

The method
MbResultType
LoftedSurface ( const RPArray<MbCurve3D> & curves,

bool closed,
const MbVector3D & begDirection,
const MbVector3D & endDirection,
MbSurface *& result )
constructs a surface from a family of curves.
The method input parameters are:
* curves is a family of curves,
* closed is a parameter that defines whether the surface is closed along the second parameter,
* begDirection is a direction vector at the surface beginning,
* endDirection is a direction vector at the surface ending.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

The constructed surface contains the curves set. If all the curves of the family are cyclically closed, then
the surface will be cyclically closed by the first parameter. When a surface is constructed, it is important to
keep the curve directions in mind, because the surface may intersect itself if the curves have different
directions. The closed parameter defines whether the surface is cyclically closed by the second parameter. If
closed=false, then the begDirection and endDirection parameters define the surface direction on edge
curves. If the length of begDirection and endDirection vectors is equal to zero, then the direction of the
surface on edge curves will be determined from the condition that the second derivatives at the surface edges
should be equal to zero. Surfaces on families of curves are described in Item O.5.15. MbLoftedSurface
Surface Based on a Family of Curves. Fig. M.5.6.1 shows a surface cyclically closed by the second
parameter that was constructed based on a family of curves.
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curves|1] closed = true

curves|3]
Fig. M.5.6.1.
Fig. M.5.6.2 shows a non-closed surface with specified edge directions constructed based on the family of
curves.
endDirection /
closed = false
curves|1]
curves|0]
curves|3]
/ begDirection
Fig. M.5.6.2.
The method
MbResultType

LoftedSurface ( const RPArray<MbCurve3D> & curves,
MbCurve3D & spine,
MbSurface *& result )
constructs a surface based on a family of curves and a guiding curve.
The method input parameters are:
* curves is a family of curves,
* spine is a guiding curve.
The output parameter of the method is the result constructed surface.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_surface.h file.
The constructed surface contains the curves set. The spine guiding curve defines the shape of the surface
between the curves of the family. Surfaces on families of curves and guiding curves are described in Item

0.5.16. MbElevationSurface Surface Based on a Family of Curves And a Guiding Curve. Fig. M.5.6.3 shows
a surface constructed based on a family of curves and a guiding curve.
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Fig. M.5.6.3.

M.5.7. Construction of Ruled Surfaces

The method
MbResultType
SectorSurface ( MbCurve3D & curve,

const MbCartPoint3D & point,
MbSurface *& result )
constructs a sectorial surface based on a curve and a line.
The method input parameters are:
* curveisa curve,
* point is a point.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

The constructed surface contains the curve and the point. In the point, the surface has a pole, where the
derivative of the surface radius vector with respect to the first parameter becomes zero. The curve should not
be degenerated and it should not contain the point. Sectorial surfaces are described in Item O.5.13.
MbSectorSurface Sectorial Surface. Fig. M.5.7.1 shows a sectorial surface.

point
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Fig. M.5.7.1.

The method
MbResultType
RuledSurface ( MbCurve3D & curvel,
MbCurve3D & curve2,
MbSurface *& result )
constructs a ruled surface based on two curves.
The method input parameters are:
e curvel is the first curve,
* curve? is the second curve.
The output parameter of the method is the result constructed surface.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_surface.h file.
The constructed surface contains curvel and curve2. The surface will have no self-intersections if
curvel and curve2 have no intersections in the points not coinciding with the curve edges. Ruled surfaces
are described in Item O.5.14. MbRuledSurface Ruled Surface. Fig. M.5.7.2 shows a ruled surface.

curvel

curve2

Fig. M.5.7.2.

M.5.8. Surface Construction Based on Three Curves

The method
MbResultType
CornerSurface (MbCurve3D & curvel,
MbCurve3D & curve2,
MbCurve3D & curve3,
MbSurface *& result )
constructs a surface based on three curves.
The method input parameters are:
e curvel is the first curve,
e curve2 is the second curve,
* curve3 is the third curve.
The output parameter of the method is the result constructed surface.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
The method is declared in the action_surface.h file.
In the general case, the constructed surface does not contain curvel, curve2 and curve3. To construct the
surface, the curves should have crossing points, where the segment joining the crossing points is orthogonal
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to the curves. The constructed surface will contain curvel, curve2 and curve3 if all these curves intersect
with each other. The surface has a pole, where the derivative of the surface radius vector with respect to the
first parameter becomes zero. Surfaces constructed based on three curves are described in Item O.5.17.
MbCornerSurface Surface Based on Three Curves. Fig. M.5.8.1 shows a surface constructed based on three
curves in two different aspects.

curve?

curve?

curvel

Fig. M.5.8.1.

M.5.9. Surface Construction Based on Four Curves

The method
MbResultType
CoverSurface (MbCurve3D & curvel,

MbCurve3D & curve2,
MbCurve3D & curve3,
MbCurve3D & curve4,
MbSurface *& result)
constructs a surface based on four curves.

The method input parameters are:

e curvel is the first curve,

* curve2 is the second curve,
e curve3 is the third curve,

e curve4 is the fourth curve.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

In the general case, the constructed surface does not contain curvel, curve2, curve3 and curve4. To
construct the surface, curvel and curve2, curve3 and curve4, curvel and curve4, curve2 and curve3
should have the crossing points, where the segment joining the crossing points is orthogonal to the curves.
The constructed surface will contain curvel, curve2, curve3 and curve4 if all pairs of these curves intersect.
Surfaces constructed based on four curves are described in Item O.5.18. MbCoverSurface Coons Surface.
Fig. M.5.9.1 shows a surface constructed based on four curves in two different aspects.
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Fig. M.5.9.1.

M.5.10. Construction of Surface Based on a Curve Grid

The method
MbResultType
MeshSurface ( const RPArray<MbCurve3D> & uCurves,

const RPArray<MbCurve3D> & vCurves,
MbSurface *& result )
constructs a surface based on two families of curves.
The method input parameters are:
* uCurves is the first set of curves (by the first parameter),
* vCurves is the second set of curves (by the second parameter),

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

To construct the surface, each curve of the uCurves set should intersect with all curves of the vCurves
set, and, correspondingly, all curves of the vCurves set should intersect with all curves of the uCurves set.
To avoid surface self-intersection, the adjacent curves of the uCurves set should have the same direction, as
well as the adjacent curves of the vCurves set. The constructed surface will contain the curves of the
uCurves set and the curves of the vCurves set. Surfaces constructed based on curve grid are described in
Item 0O.5.20. MbMeshSurface Surface Based on a Network of Curves. Fig. M.5.10.1 shows two sets of
curves, and Fig. M.5.10.2 shows a surface constructed based on these two curves.
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M.5.11. Equidistant Surface Construction

The method
MbResultType
OffsetSurface ( MbSurface & surface,
double distance,
MbSurface *& result )
constructs an equidistant surface.
The method input parameters are:
e surface is a base surface,
* distance is a signed equidistant value.
The output parameter of the method is the result constructed surface.
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If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

The method is declared in the action_surface.h file.

Surface construction is possible, if the surface has no points, where the surface bends in the direction of
the equidistant and curve radius is less than distance. Each point of the constructed surface will be located at
the distance from the local normal of surface with the same parameters. Equidistant surfaces are described in
Item O.5.23. MbOffsetSurface Equidistant Surface. Fig. M.5.11.1 shows an equidistant surface.

result distance

surface

|

Fig. M.5.11.1.

The domain of definition of the constructed equidistant surface coincides with the domain of definition of
surface. The domain of definition of equidistant surface can be extended.

The method
MbResultType
ExtendedSurface ( MbSurface & surface,

double uMin,
double uMax,
double vMin,
double vMax,
MbSurface *& result )
constructs an extended surface.
The method input parameters are:
e surface is a base surface,
*  uMin is the minimum value of the first surface parameter,
*  uMax is the maximum value of the first surface parameter,
*  vMin is the minimum value of the second surface parameter,
*  vMax is the maximum value of the second surface parameter.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration. The method is declared in the action_surface.h file.

The surface can be constructed if it has no poles and other singular points on a boundary of surface
domain of definition and its extension. The constructed surface coincides with surface, but it has other
domains of definition of the parameters. A domain can be both reduced and extended. Beyond the domain of
parameter definition, surface is extended tangentially. The extended surface is constructed as a zero-offset
equidistant surface. Fig. M.5.11.2 shows an extended surface.
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M.5.12. Construction of a Surface With Arbitrary Borders

The method
MbResultType
BoundedSurface ( MbSurface & surface,

const RPArray<MbCurve> & bounds,
MbSurface *& result )
constructs a surface with a given boundary.
The method input parameters are:
» surface is an original surface,
* bounds is a set of boundaries in the parametric space.

The output parameter of the method is the result constructed surface.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration. The method is declared in the action_surface.h file.

By default, the surface has rectangular domain of parameter definition. The original domain of parameter
definition can be changed by describing the domain boundaries with two-dimensional closed curves bounds.
If the bounds set contains more than one curve, then the first curve of the bounds set should describe the
external boundary, and all other curves should lie within the first curve of the set. The curves of the bounds
set can go beyond the original parameter domain of definition, if there are no singular points. If the set of
boundaries is empty, then closed compound curve will be constructed based on the original domain of
definition of the surface parameters. Surfaces with arbitrary boundaries are described in Item O.5.27.
MbCurveBoundedSurface Surface with Arbitrary Borders. Fig. M.5.12.1 shows a surface with two closed
curves on it, and Fig. M.5.12.2 shows a result of constructing a surface with boundaries shaped like these
curves.

246



bounds[1]

bounds[0]

surface

Fig. M.5.12.1.

result

Fig. M.5.12.2.

247



M.6. DIRECT MODELING METHODS

Direct modeling modifies the geometric model by modifying its components. A geometric model at any
stage can be used: it can be a template or a finalized model. Direct modeling methods can modify either all
elements of a geometric model or its specific groups. For instance, a body face group can be moved
relatively to other body faces, or it can be replaced with equidistant faces or deformable faces. A new body
can be constructed from the selected group of faces. The selected fillets or characteristic features can be
deleted from the geometric model, for instance, holes or raised portions.

M.6.1. Constructing a Transformed Body

The method
MbResultType
TransformedSolid ( MbSolid & solid,

MbeCopyMode sameShell,
const TransformValues & params,
const MbSNameMaker & names,
MbSolid *& result )
transforms a copy of the original body using a given matrix.
The method input parameters are:

* solid is an original body,

*  sameShell is an original body copying option,

*  params are transformation parameters,

* names is a face namer.

The output parameter of the method is the result constructed body.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration. This method is declared in the action_direct.h file.

This method copies the body and scales its copy based on a matrix having equal or different
transformation scales for the global coordinate system axes.

The solid parameter contains an original body that should be edited. The sameShell parameter controls
the transfer of unchanged faces, edges, and vertices from the original body solid to the constructed body
result. The sameShell parameter can take one of the following four values: cm_ Copy, cm_KeepSurface,
cm_KeepHistory and cm_Same. The MbeCopyMode enumeration is declared in the mb_enum.h file and
described in Item O.7.9. Copying a Set of Faces.

The params parameter contains the transformation matrix params.matrix and the params.fixedPoint,
params.useFixed, and params.isotropy values used to calculate the transformation matrix. The
TransformValues transformation parameter is declared in the op_shell parameter.h file.

The names parameter is used for operation versioning.

The transformation matrix is calculated based on the bounding box of the original body solid and the
offset of one of the bounding box points. The following method is used for calculation:
bool
MbCube::CalculateMatrix( size t plndex,

const MbCartPoint3D & point,

const MbCartPoint3D & fixedPoint,

bool useFixed,

bool isotropy,

MbMatrix3D & matrix ) const,
where plndex is a bounding box point number; point is a point in space, with which a point of the bounding
box with the pIndex number should coincide; fixedPoint is a fixed transformation point; useFixed is a flag
that indicates whether the method uses a fixed point; isotropy is a flag that indicates whether the
transformation scales are equal. Fig. M.6.1.1 shows how the points of the dimension cube of the solid body
are numbered. The vertices of the dimension cube are numbered from 0 to 7, the midpoints of the bounding
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box edges are numbered from 8 to 19, and the centers of the bounding box faces are numbered from 20 to 25.
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Fig. M.6.1.1.

The matrix transformation matrix is calculated based on the deformed cube received by aligning the
bounding box point with the p/ndex number and the point in space. If useFixed=true, then the fixedPoint
point will be used as the fixed point for the transformation. If useFixed=false, then the bounding box point
opposite to the point with the p/ndex number will be used as the fixed point for the transformation. The
following bounding box points are considered to be opposite: 0-6, 1-7, 2—4, 3-5, 8-14, 9-15, 10-12, 11-13,
16-18, 17-19, 20-21, 22-23, 24-25. If isotropy=true, then the transformation scales along all axes will be
the same and proportional to the bounding box offset vector with the p/ndex number. If isotropy=false, then
the transformation scales will be proportional to the projections of bounding box offset vector point with the
plndex number on the bounding box sides. The params.fixedPoint, params.useFixed, params.isotropy and
params.matrix values are used as fixedPoint, useFixed, isotropy and matrix parameters of the
CalculateMatrix method.

Fig. M.6.1.2 shows selid an original body, the points of the bounding box and the point in space point,
with which the specified point of the bounding box should coincide, and Fig. M.6.1.3 shows the result
transformed body constructed by this method if useFixed=false and isotropy=false.

solid

point

Fig. M.6.1.2.
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params.matrix =

Fig. M.6.1.3.

Transform is a class method, it transforms a body based on the given matrix. This method is loaded for
all geometric objects, but in this case the body won’t contain any data about the actions performed with it.

The TransformedSolid method adds the MbSymmetrySolid constructor in the newly constructed body
log containing all data required to execute the operation. The MbTransformedSolid constructor is declared in
the cr_transformed _solid.h file.

The Test.exe test application constructs a transformed body using the "Create -> Body -> By direct
editing -> Transformation of bounding box" menu command.

M.6.2. Constructing a Modified Body

The method
MbResultType
FaceModifiedSolid ( MbSolid & solid,

MbeCopyMode sameShell,
const ModifyValues & params,
const RPArray<MbFace> & faces,
const MbSNameMaker & names,
MbSolid *& result)
modifies the specified faces of the original body copy using one of the indicated methods.
The method input parameters are:

* solid is an original body,

*  sameShell is an original body copying option,

*  params are modification parameters,

» faces are modified body faces,

* names is a face namer.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action_direct.h file.

This method copies the body and performs one of the following actions: deleting the specified faces from
the body copy, creating a new body based on the copies of the specified faces with the environment, moving
the specified faces relative to the remaining faces in the body copy, replacing the specified faces in the body
copy by equidistant faces, replacing the specified faces in the body copy by deformable faces, or deleting the
specified fillet faces in the body copy.

The solid parameter contains the original body to be processed. The sameShell parameter controls the
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transfer of unchanged faces, edges, and vertices from the original body solid to the constructed body result.
The sameShell parameter can take one of the following four values: c¢m_Copy, cm_KeepSurface,
cm_KeepHistory and cm_Same. The MbeCopyMode enumeration is declared in the mb_enum.h file and
described in Item O.7.9. Copying a Set of Faces.

The params parameter describes the modification method defined by the params.way type, and the
modification value defined by the params.direction vector. The params.way modification type can take one
of the following seven MbeModifyingType enumeration values: dmt Remove, dmt Create, dmt Action,
dmt Offset, dmt Fillet, dmt Supple, dmt Purify. The ModifyValues modification parameters and the
MbeModifyingType enumeration are declared in op_shell parameter.h file.

The faces parameter contains the set of solid body faces, which will be somehow modified by this
method in the copy of the body.

The names parameter is used to name new faces, edges, vertexes, and for operation versioning.

If params.way=dmt_ Remove, then this method removes faces from the copy of the solid body and uses
the environment to process the places where the removed faces were located, keeping the body closed. If
faces are connected with other faces by fillets, then the fillet faces are added to faces. If the faces set is
empty, then this method removes the cylindric and flat faces, the radius of which is less or equal to the
params.direction vector length, that permits to delete small through or blind holes without a need to
enumerate them. Fig. M.6.2.1 shows the original body, and Fig. M.6.2.2 shows the constructed body formed
by removing the specified faces of the original body.

faces params.way = dmt_Remove
Fig. M.6.2.1. Fig. M.6.2.2.

If params.way=dmt_Create, then this method creates a new body from the copies of faces. If faces are
connected by fillets with other faces, then the fillets are removed first, and after that a new body is
constructed from faces. The new body will be closed, because it will contain faces and the faces constructed
on the basis of the surfaces adjacent to faces. The additional faces are required to remove the border edges.
Fig. M.6.2.3 shows the original body, and Fig. M.6.2.4 shows the newly constructed body based on the
specified faces of the original body. The body shown on Fig. M.6.2.4 contains five faces: three faces from
the faces set and two faces based on the cylindrical surface, on which two removed fillets were based.

faces

params.way = dmt_Create

Fig. M.6.2.3. Fig. M.6.2.4.

If params.way=dmt Action, then the constructed method moves the faces relative to other faces in the
copy of the solid body. They are displaced in the direction of params.direction vector by its length. If all
faces are connected with other faces by fillets, then the fillets are removed first and then faces are moved and
after that the fillets are restored in new positions. Fig. M.6.2.5 and Fig. M.6.2.6 show the bodies constructed
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by moving the specified faces of the original bodies shown in Fig. M.6.2.1 and Fig. M.6.2.3 correspondingly.

params.way = dmt Action
faces

params.direction

\

params.direction

faces

params.way = dmt_Action

Fig. M.6.2.5. Fig. M.6.2.6.

If params.way=dmt_Offset, then this method replaces the faces in the solid body copy by equidistant
faces. The equidistant faces are moved by the params.direction vector length. If the faces are connected
with other faces by fillets, then the fillets are removed first, then the faces are replaced with equidistant
faces, and after that the fillets are recovered in new places. Fig. M.6.2.7 and Fig. M.6.2.8 show bodies
constructed by replacing the given faces with equidistant faces. The original bodies are shown in Fig.
M.6.2.1 and Fig. M.6.2.3 correspondingly.

params.direction = (50 0) f1.0q

params.direction = (10 0 0) ‘
params.way = dmt_Offset params.way = dmt Offset

Fig. M.6.2.7. Fig. M.6.2.8.

faces

If one of the params.direction vector components is negative, then the equidistant faces are displaced to a
negative distance. Fig. M.6.2.9 and Fig. M.6.2.10 show bodies constructed by replacing the given faces by
equidistant faces using faces with a negative distance. The original bodies are shown in Fig. M.6.2.5 and Fig.
M.6.2.6 correspondingly.

faces params.direction = (-2 0 0)
params.direction = (-5 0 0)
params.way = dmt Offset params.way = dmt_Offset
Fig. M.6.2.9. Fig. M.6.2.10.

If params.way=dmt_Fillet, then this method changes the fillet radii for the faces in the solid body copy.
The fillet face radius is increased by the length of the params.direction vector. If one of params.direction
vector components is negative, then the radius of the fillet faces is reduced by the length of the
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params.direction vector. Fig. M.6.2.11 and Fig. M.6.2.12 show the bodies constructed by changing the fillet
radius for the specified faces. The original bodies are shown in Fig. M.6.2.1 and Fig. M.6.2.3
correspondingly.

faces faces params.direction = (-3 0 0)

params.way = dmt_Fillet
params.direction = (3 00)

params.way = dmt_Fillet

Fig. M.6.2.11. Fig M.6.2.12.

If params.way=dmt_Supple, then this method replaces faces in the solid body copy by deformable faces
in order to enable further editing of these faces. If faces are connected with other faces by fillets, then the
fillets are removed first, then the faces are replaced with deformable faces, and after that the fillets are
restored in new positions. Fig. M.6.2.13 shows the original body, and Fig. M.6.2.14 shows the body
constructed by replacing a specified face of the original body with a deformable face, and also the control
points of the deformable face. The deformable face is constructed based on a NURBS surface.

solid params.way = dmt_Supple

Fig. M.6.2.13. Fig M.6.2.14.

Fig. M.6.2.15 shows a deformable body with displaced control points of the deformable face.
Fig. M.6.2.16 shows the result of body deformation.
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params.way = dmt_Supple result

Fig. M.6.2.15. Fig. M.6.2.16.

If params.way=dmt_Purify, then this method removes fillet faces of in the solid body copy, and uses the
environment to process the places where the removed faces were located, keeping the body closed. Fig.
M.6.2.17 and Fig. M.6.2.18 show the bodies constructed by removing the specified fillet faces. The original
bodies are shown in Fig. M.6.2.1 and Fig. M.6.2.3 correspondingly.

params.way = dmt_Purify

params.way = dmt_Purify

Fig M.6.2.17. Fig. M.6.2.18.

If the faces set is empty, then this method removes fillet faces if the corresponding radius is less then or
equal to the params.direction vector length. Fig. M.6.2.19 shows the original body, and M.6.2.20 shows the
body constructed by removing all fillet faces, the radius of which is less then or equal to |params.direction|.

solid params.way = dmt Purify

Fig. M.6.2.19. Fig. M.6.2.20.
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The FaceModifiedSolid method works if the topology of the modified body is not changed.

The FaceModifiedSolid method adds the MbSymmetrySolid constructor in a newly constructed body log
that contains all data required to execute the operation. The MbFaceModifiedSolid constructor is declared in
the cr_modified_solid.h file.

The test.exe test application creates a modified body using the following menu commands: "Create-
>Body->By direct editing->Removal of Faces", "Create->Body->By direct editing->Body creation by
faces", "Create->Body->By direct editing->Translation of faces", "Create->Body->By direct editing-
>Replace by offset faces", "Create->Body->By direct editing->Fillets modification", "Create->Body->By
direct editing->Deformation of faces", "Create->Body->By direct editing->Deletion of fillets".

M.6.3. Constructing a Deformable Body

Several operations are performed during deformable body construction: the surfaces of specified faces are
replaced with deformable surfaces, the control points of the deformable surfaces are received, the control
points are moved, and the deformable surfaces are initialized by new control points. The methods described
below are used to perform the above operations.

The method
MbResultType
ModifiedNurbsItem ( MbSolid & solid,

MbeCopyMode sameShell,
const NurbsValues & params,
const RPArray<MbFace> & faces,
const MbSNameMaker & names,
MbSolid *& result )
replaces the specified faces of the body copy with deformable faces for further editing.
The method input parameters are:
* solid is an original body,

* sameShell is an original body copying option,

*  params are transformation parameters,

* faces are replaced body faces,

* names is a face namer.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action_direct.h file.

This method copies the solid body and prepares the body copy for further deformation of the specified
faces of the original body.

The solid parameter contains an original body, its specified faces will be replaced by deformable faces
based on NURBS surfaces. The sameShell parameter controls the transfer of unchanged faces, edges, and
vertices from the original body solid to the constructed body result. The sameShell parameter can take one
of the following four values: c¢cm_ Copy, cm KeepSurface, cm_ KeepHistory and cm_Same. The
MbeCopyMode enumeration is declared in the mb_enum.h file and described in Item O.7.9. Copying a Set
of Faces.

The params parameter contains MbNurbsParameters uParameters and MbNurbsParameters
vParameters data required to construct NURBS surfaces, see Fig. M.6.3.1. MbNurbsParameters
uParameters contains degree, the number of control points (pointsCount), the modified region (region), and
the knots vector for the first parameter of the NURBS surfaces. MbNurbsParameters vParameters contains
degree, the number of control points (pointsCount), the modified region (region), and the knots vector for
the second parameter of the NURBS surfaces. The uParameters.usedpprox and vParameters.useApprox
permit to construct deformable surfaces, which approximate the original face surfaces in their initial state.
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Fig. M.6.3.1.

The faces parameter contains the set of the solid body faces, which will be replaced by deformable faces
based on NURBS surfaces in result constructed body.

The names parameter is used to name new faces, edges, vertexes, and for operation versioning,.

The method
MbResultType
ModifiedNurbsItem ( MbSolid & solid,

MbeCopyMode sameShell,

const NurbsValues & params,

const MbFace & face,

const MbSNameMaker & names,

MbSolid *& result )
has the same name as the previous method and it replaces one face of the body with a deformable face for
further editing. This method differs from the previous one by the fourth parameter, which contains one
replaced face instead of a set of faces. This method is declared in the action_direct.h file.

The constructed result body can look like the original selid body, but unlike the original body it can
provide NURBS surfaces or control points of NURBS surfaces for modification. The modified control points
and their weights can be later returned to the corresponding face surfaces, thereby changing the face shape.
Fig. M.6.3.2 shows an original cylindrical body solid, its side face is a cylinder, and Fig. M.6.3.3 shows the
result body with a side face based on a NURBS surface. NURBS surface control points are also shown in
Fig. M.6.3.3.

solis result

MbCylinderSurface MbSplineSurface

Fig. M.6.3.2. Fig. M.6.3.3.
The ModifiedNurbsItem methods add MbModifiedNurbsItem constructor in the newly constructed body
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log that contains all data required to execute the operation. The MbModifiedNurbsltem constructor is
declared in the cr_modified nurns .h file.

The method
MbSurface *

GetControlSurface ( const MbFace & face)
copies the NURBS surface of face for further editing.

The original face is an input parameter of the method.

When successful, the method returns a pointer to the face surface copy, otherwise the method returns null.

This method is declared in the action_direct.h file.

The method returns a non-zero pointer to the surface if face is based on a NURBS surface. This requirement
will be met after successful execution of ModifiedNurbsItem methods described in the previous item. The
method returns a pointer to the copy of the base face surface, instead of the base surface itself. Later you can
modify the set of control points and their weights and then replace the body face surface with the modified
surface.

The method
MbResultType
FaceControlPoints ( const MbFace & face,

Array2<MbCartPoint3D> & controlPoints,
Array2<double> & weights)
returns the set of control points of the face surface points and the sets of their weights.
The method input parameters are:
* face is an original surface.
Output parameters of the method are as follows:
* controlPoints are face control points,
*  weights are control point weights.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action_direct.h file.

The method returns rt_Success if face is based on a NURBS surface. You can change the shape of the
surface by changing the position of controlPoints and the weights of the control points. This method should
be used after successful execution of ModifiedNurbsItem methods described above.

The controlPoints are passed as a rectangular matrix, its rows correspond to the first NURBS surface
parameter, and its columns correspond to the second NURBS surface parameter. It means that one row of the
controlPoints rectangular matrix contains the points lying along the coordinate line of the surface with the
fixed second NURBS surface parameter, and one column of the controlPoints rectangular matrix contains
the points lying along the coordinate line of the surface with the fixed first NURBS surface parameter. Fig.
M.6.3.4 shows the control points and the coordinate lines of the surface on the background.
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Fig. M.6.3.4.

The weights rectangular matrix corresponds to controlPoints rectangular matrix.
Fig. M.6.3.5 shows face and the controlPoints of its surface, and Fig. M.6.3.6 shows the edited
controlPoints for further modification of face.

face

controlPoints controlPoints
Fig M.6.3.5. Fig. M.6.3.6.
The method
MbResultType
NurbsModification ( MbSolid & solid,
MbeCopyMode sameShell,
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MbFace * face,

MbSurface & faceSurface,

Array2<bool> & fixedPoints,

const MbSNameMaker & names,

MbSolid *& result )
deforms the given face of the original body copy by adding the input surface in the copy of the modified
surface.

The method input parameters are:

* solid is an original body,

*  sameShell is an original body copying option,

* face is a body face to be modified,

e faceSurface is a surface of the face to be modified,

* fixedPoints is a mask with fixed control points of the surface,
* names is a face namer.

The output parameter of the method is the result constructed body.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action_direct.h file.

This method copies the solid body and adds received faceSurface surface in the copy of face of the solid
body.

The solid parameter contains the original body. The sameShell parameter controls the transfer of
unchanged faces, edges, and vertices from the original body solid to the constructed body result. The
sameShell parameter can take one of the following four values: cm Copy, cm_ KeepSurface,
cm_KeepHistory and cm_Same. The MbeCopyMode enumeration is declared in the mb_enum.h file and
described in Item O.7.9. Copying a Set of Faces.

The faceSurface should be a NURBS surface. The fixedPoints parameter is a rectangular matrix, its rows
and columns correspond to the rows and columns of the control point matrix for the faceSurface NURBS
surface. The matrix elements with true value determine the fixed control points of the NURBS surface.

The names parameter is used to name new faces, edges, vertexes, and for operation versioning.

The method
MbResultType
NurbsModification ( MbSolid & solid,

MbeCopyMode sameShell,

MbFace * face,

const Array2<MbCartPoint3D> & controlPoints,
const Array2<double> & weights,

Array2<bool> * fixedPoints,
const MbSNameMaker & names,
MbSolid *& result )

deforms the specified face of the original body copy based on given control points and their weights.
The method input parameters are:
* solid is an original body,
*  sameShell is an original body copying option,
e face is a body face to be modified,
* controlPoints are given control points of the modified face,
*  weights are control point weights,
* fixedPoints is a mask with fixed control points of the face,
* names is a face namer.
The output parameter of the method is the result constructed body.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
This method is declared in the action_direct.h file.
This method should be used after successful execution of ModifiedNurbsItem, GetControlSurface and
FaceControlPoints methods described above. The ModifiedNurbsItem methods prepare the faces to
modification. Fig. M.6.3.7 shows the original solid cylindrical body, its side face is based on a NURBS
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surface and contains the control points that should be modified. Fig. M.6.3.8 shows the result body with a
modified side face. its controlPoints are shown in Fig. M.6.3.6.

face

solid result

Fig. M.6.3.7. Fig. M.6.3.8.

The NurbsModification methods add the MbNurbsModification constructor in the newly constructed
body log that contains all data required to execute the operation. The MbNurbsModification constructor is
declared in the cr_modified nurns .h file.

M.6.4. Constructing a Deformable Prism

The method
MbResultType
NurbsBlockSolid ( const MbPlacement3D& place,
double x, double y, double z,
bool orientation,
const MbSNameMaker & names,
SimpleName name,
NurbsBlockValues & params,
MbSolid *& result )
constructs a body shaped as a rectangular parallelepiped with deformable faces.
The method input parameters are:
* place is a local coordinate system,
* xisadimension along the X axis,
* yisadimension along the Y axis,
* zis adimension along the Z axis,
* orientation is a parameter indicating whether the normals are directed outside of the body (true),
* names is a face namer,
* name is a main name,
*  params are face construction parameters.
The output parameter of the method is the result body constructed from NURBS surfaces.
If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.
This method is declared in the action_direct.h file.
This method constructs a deformable rectangular prism-shaped body, its dimensions in the place local
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coordinate system are defined by the parameters x, y, z. All faces of the prism are constructed based on flat
NURBS surfaces; surface degree and the number of control points are defined by the params parameter. The
NurbsBlockValues parameter is declared in the op_shell parameter .h file.

Fig. M.6.4.1 shows a result prism constructed by the NurbsBlockSolid method, and its control points.
Fig. M.6.4.2 shows the same prism after deformation by an offset of the face control points.
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Fig. M.6.4.1. Fig. M.6.4.2.

The NurbsBlockSolid method adds the MbNurbsBlockSolid constructor in the newly constructed body
log containing all data required to execute the operation. The MbNurbsBlockSolid constructor is declared in
the cr_nurbs_block_solid .h file.

M.6.5. Constructing a Smoothed Surface

The method
MbResultType
SplineSurfaceSmoothing ( const MbSplineSurface & surface,

size t udegree,
size t vdegree,
MbSplineSurface *& result )
smooths a copy of the original surface.
The method input parameters are:

» surface is an original surface,

*  udegree is a parameter defining smoothing by the first surface parameter,

* vdegree is a parameter defining smoothing by the second surface parameter.

The output parameter of the method is constructed smoothed surface result.

If successful, the method returns rt_Success, otherwise it returns an error code from the MbResultType
enumeration.

This method is declared in the action_direct.h file.

This method smooths the original surface without changing its spline degrees and the number of control
points. Smoothing is defined by the udegree and vdegree parameters. They should exceed the corresponding
degrees of the original surface splines. The method returns result, a smoothed copy of the initial surface.

Fig. M.6.5.1 shows an original NURBS surface. Fig. M.6.5.2 shows a smoothed surface.
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surface result

Fig. M.6.5.1. Fig M.6.5.2.
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M.7. SHEET METAL BODY CONSTRUCTION METHODS

The C3D Geometric Kernel supports methods that permit to construct models of sheet metal structures.
There are the following sheet body construction methods: plate and shell, as well as the following operations
with sheet bodies: bend by edges, bend along a line, incision, bend based on sketch, flat pattern, corner cap,
cut, adding a plate, stamp, louver, and bead. There is also a number of service functions for work with sheet
bodies. Let's call wide faces of the plate sheet plates, and call all other faces side faces. In this case the sheet
bend face with smaller radius will be called the internal face of the bend, and the face with bigger radius will
be called external bend face.

M.7.1. Constructing a Sheet Body

The method
MbResultType
CreateSheetSolid ( const MbPlacement3D & placement,

RPArray<MbContour> & contours,
bool unbended,
const MbSheetMetal Values & params,
PArray<MbSNameMaker> * names,
PArray<MbSMBendNames> & bends,
MbSolid *& result )
constructs a sheet body by extruding flat contours.
The method input parameters are:

* placement is a local coordinate system,

* contours are a sheet body contours determined in the XY plane of the local coordinate system,

* unbended is a flag that indicates whether the body is formed in unbent state,

* params are construction parameters,

* names are namers of constructed faces.

* Dbends are generated bend parameters.

The output parameters of this method are the names of the sheet faces of the formed bends recorded in
bends and the result body itself.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

If the contours are closed, then the sheet body is constructed using the given thickness and the given
contour. One contour among the closed contours should be external, and it should contain all other internal
contours. The cuts will be formed at the internal contours.

If the contours are non-closed, then the sheet body is constructed as follows. Non-closed contours are
closed by filleting the angles between the segments using the radii set in params or bends, and closed
contours formed as a result are extruded to the given distances. Then the formed sheet body contours are
thickened in some direction. Thickening direction is specified in the params operation parameters. If the
contour already contains an arc, then it should smoothly mate with adjacent segments. It is possible to
construct a sheet body using bends for non-closed contours only. The unbended flag is valid only in this
case. If the bends array of bend parameters is empty, then the bends are formed using unified parameters set
in params. In this case, the names of sheet face parameters of the formed bends are not recorded at all. If
bends parameter array is filled, then the number of elements in this array should be equal to the number of
formed bends.

Bend parameters are determined as follows. Each contour in the contours array corresponds to a namer in
the names array, and each namer contains an array of contour segment names. If the bend is formed in the
place where two segments join, then the bend parameters are taken from the element of the bends array that
contains the names of these segments in the segNamel and segName?2 fields. If the bend is formed in the
place of an arc, then its parameters are taken from the bends array element that has the arc name in the
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segNamel, and segName2 is SYMPLENAME MAX.
Fig. M.7.1.1 shows a sheet body formed based on several closed sketches..

Fig. M.7.1.1

Fig. M.7.1.2

Fig. M.7.1.2 shows a sheet body formed based on a non-closed sketch containing an arc and a pair of
segments joined at a certain angle.

The CreateSheetSolid method adds the MbSheetMetalSolid constructor in the newly constructed body
log containing all data required to execute the operation. The MbSheetMetalSolid constructor is declared in
the cr_sheet metal solid.h file.

M.7.2. Constructing a Shell

The method
MbResultType
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CreateRuledSolid ( const MbRuledSolidValues & params,
const MbSNameMaker & names,
PArray<MbSMBendNames> & bends,
MbContour *& resultContour,
MbSolid *& result )

constructs a shell.

The method input parameters are:

* params are construction parameters,
* names is a namer of constructed faces,
* bends are generated bend parameters.

The output parameters of this method are the names of the sheet faces of the constructed bends recorded
in bends, resultContour is the params.contourl contour filleted according to the given parameters, and the
result body itself. This operation also fills the contour splitting parameter arrays, if they were empty.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

A shell is constructed based on one or two flat contours.

If only one contour is used, then the shell is formed by extruding the contour filleted according to contour
parameters with a possible slope, and then by thickening the formed surface. If the contour is closed, then a
gap is created in the place specified by the operation parameters. If the shell is constructed with a slope, then
it is possible to create conical bends or cylindric bends with constant radii in the places where the original
contour was filleted. It is also possible to segment the contour arcs, in this case an arc is replaced by a set of
segments that approximate it.

If the shell is formed based on two contours, then in general case the contour segments are joined by ruled
surfaces, which are then thickened. In order to avoid surface twisting, the contours are automatically or
manually split to smaller segments. Similar to construction based on one sketch, a gap is created in the place
specified by the parameters to make the shell unbending feasible.

Fig. M.7.2.1 shows a shell constructed without keeping the bend radius.

Fig. M.7.2.1

Fig. M.7.2.2 shows a shell constructed keeping the bend radius.
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Fig. M.7.2.2

Fig. M.7.2.3 shows a shell constructed with segmentation of the second contour arcs.
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Fig. M.7.2.3

The CreateRuledSolid method adds the MbRuledSolid constructor in a newly constructed body log that
contains all data required to execute the operation. The MbRuledSolid constructor is declared in the
cr_sheet ruled solid.h file.

M.7.3. Forming a Sheet Body Bend Along a Line

The method
MbResultType
BendSheetSolidOverSegment ( MbSolid & solid,

MbeCopyMode sameShell,
const RPArray<MbFace> & bendingFaces,
MbCurve3D & curve,
bool unbended,
const MbBendOverSegValues & params,
MbSNameMaker & names,
MbSolid *& result )
bends a sheet body along a line lying in a sheet face of the body.
The method input parameters are:

* solid is an original body,

* sameShell is an original body copy option,

* bendingFaces are faces that are bent,

* curve is a straight-line curve, the body is bent along it,

* unbended is a flag that indicates whether the element is formed in an unbent state,

* params are construction parameters,

* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

Straight-line curve can be either a segment lying in bendingFaces flat faces, or a line. All faces of the
bendingFaces array should lie in one common plane. The curve segment can lie in several flat faces
simultaneously, but the bends will be formed only at those faces that were added in the bendingFaces array.

Fig. M.7.3.1 shows a sheet body after bend along a line operation.
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Fig. M.7.3.1

The BendSheetSolidOverSegment method adds the MbBendOverSegSolid constructor in the newly
constructed body log containing all data required to execute the operation. The MbBendOverSegSolid
constructor is declared in the cr_sheet_bend over seg_solid.h file.

M.7.4. Constructing a Sheet Body Incision

The method
MbResultType
SheetSolidJog ( MbSolid & solid,
MbeCopyMode sameShell,
const RPArray<MbFace> & bendingFaces,
MbCurve3D & curve,
bool unbended,
const MbJogValues & params,
const MbBendValues & secondBendParams,
MbSNameMaker & names,
RPArray<MbFace> & firstBendFaces,
RPArray<MbFace> & secondBendFaces,
MbSolid *& result )
incises a sheet body along a straight line.
The method input parameters are:
e solid is an original body,
*  sameShell is an original body copy option,
* bendingFaces are faces that are bent,
* curve is a straight-line curve, along it the body will be incised,
* unbended is a flag that indicates whether the element is formed in unbent state,
* params are construction parameters,
* secondBendParams are parameters of the second bend,
* names is a namer of constructed faces.
The output parameters of the method are the result constructed body and:
» firstBendFaces are the sheet faces of the bends adjacent to the fixed part of the base faces,
» secondBendFaces are the sheet faces of bends raised over the base faces.
If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.
The method is declared in the action_sheet.h file.
The incision line can be either a segment lying in bendingFaces flat faces, or a straight line. All faces of
the bendingFaces array should lie in one common plane. The curve segment can lie in several flat faces
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simultaneously, but the bends will be formed only at those faces that were added in the bendingFaces array.
The incision is formed as two bends along the line displaced with respect to one another. Thus formed sheet
faces of the bends are returned in firstBendFaces and secondBendFaces arrays. Fig. M.7.4.1 shows a sheet
body with executed incision operation.

Fig. M.7.4.1

The SheetSolidJog method adds the MblogSolid constructor in the newly constructed body log
containing all data required to execute the operation. The MbJogSolid constructor is declared in the
cr_stamp_jog solid.h file.

M.7.5. Bend Unbent Sheet Body

The method
MbResultType
BendSheetSolid ( MbSolid & solid,

MbeCopyMode sameShell,
const RPArray<MbSheetMetalBend> & bends,
const MbFace & face,
const MbCartPoint & point,
MbSNameMaker & names,
MbSolid *& result )
transforms the given bends to a bent state.
The method input parameters are:
* solid is an original body,
*  sameShell is an original body copy option,
* bends is a set of bends, it consists of face pair arrays: internal and external bend faces,
e face is a face that remains fixed,
* point is a point in the parametric region of the bend face surface,
* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

The method bends unbent bends of the sheet body relative to the fixed face. If face is a sheet surface
belonging to one of the bends, then bend is performed so that only the surface tangential to the surface lying
below face in point remains fixed. As a rule, each element of the bends array contains only one pair of sheet
faces, namely the internal and external bend faces. However, if the ruled shell is formed based on two
sketches, then it is possible that a chain of such adjacent bends should be bent simultaneously. In that case,
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the element of the bends array should contain the entire chain of such pairs that correspond to external and
internal faces of the compound bend.
Fig. M.7.5.1 shows a sheet body in unbent state.

Fig. M.7.5.1

Fig. M.7.5.2 shows a sheet body from Fig. M.7.5.1 after bend operation.

Fig. M.7.5.2

The BendSheetSolid method adds the MbBendUnbendSolid constructor in the newly constructed body
log containing all data required to execute the operation. The MbBendUnbendSolid constructor is declared in
the cr_sheet_bend unbend_solid.h file.

M.7.6. Unbend Sheet Body Bends

The method
MbResultType
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UnbendSheetSolid ( MbSolid & solid,
MbeCopyMode sameShell,
const RPArray<MbSheetMetalBend> & bends,
const MbFace & face,
const MbCartPoint & point,
MbSNameMaker & names,
MbSolid *& result )
unbends the sheet body bends.
The method input parameters are:
* solid is an original body,
*  sameShell is an original body copy option,
* bends is a set of bends containing face pairs: an internal bend face and an external bend face,
e face is a face that remains fixed,
* point is a point in the parametric region of the bend face surface,
* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

The method unbends the bends of the sheet body relative to the fixed face. If the face is a sheet surface
belonging to one of the bends, then unbend operation is performed so that only the surface tangential to the
surface lying under the face in point remains fixed. As a rule, each element of the bends array contains only
one pair of sheet faces, namely the internal bend face and the external bend face. However, if a ruled shell is
formed based on two sketches, then it is possible that a chain of such adjacent bends can only be unbent
simultaneously. In that case, the element of the bends array should contain the whole chain of such pairs of
corresponding external and internal faces of the compound bend.

Fig. M.7.6.1 shows a sheet body in bent state.

Fig. M.7.6.1
Fig. M.7.6.2 shows the sheet body from Fig. M.7.6.1 after unbend operation.
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Fig. M.7.6.2

The UnbendSheetSolid method adds the MbBendUnbendSolid constructor in the newly constructed
body log containing all data required to execute the operation. The MbBendUnbendSolid constructor is
declared in the cr_sheet bend unbend solid.h file.

M.7.7. Add a Plate to a Sheet Body

The method
MbResultType
SheetSolidPlate ( MbSolid & solid,
MbeCopyMode sameShell,
const MbPlacement3D & placement,
RPArray<MbContour> & contours,
const MbSheetMetal Values & params,
PArray<MbSNameMaker> * names,
MbSolid *& result )
adds a plate to a sheet body.
The method input parameters are:
* solid is an original body,
*  sameShell is an original body copy option,
* placement is a local coordinate system,
* contours are plate contours given in the XY plane of the local coordinate system,
* params are construction parameters,
* names is a namer of constructed faces.
The output parameter of the method is the result constructed body.
If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.
The method is declared in the action_sheet.h file.
The plate is constructed based on one or several closed non-intersecting contours; multiple external
contours are possible.
Fig. M.7.7.1 shows a sheet body after plate operation.
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Fig. M.7.7.1

The SheetSolidPlate method adds the MbSheetMetalSolid constructor in the newly constructed body log
containing all data required to execute the operation. The MbSheetMetalSolid constructor is declared in the
cr_sheet sheet metal solid.h file.

M.7.8. Making a Cut in a Sheet Body

The method
MbResultType
SheetSolidHole ( MbSolid & solid,

MbeCopyMode sameShell,
const MbPlacement3D & placement,
RPArray<MbContour> & contours,
const MbSheetMetal Values & params,
bool difference,
PArray<MbSNameMaker> * names,
MbSolid *& result )
cuts holes in a sheet body based on closed contours.
The method input parameters are:
* solid is an original body,
*  sameShell is an original body copy option,
* placement is a local coordinate system,
e contours are sheet body cut/intersection contours given in the XY plane of the local coordinate
system,
* params are construction parameters,
* difference is a flag that indicates the construction method: hole (true), intersection (false),
* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

The method is notable in that besides a simple boolean cut it has a special cut by depth option. In this
latter case the cut envelopes all the bends of the sheet body, i.e. the sheet body constructed based on contours
using cut parameters with the original body thickness before cutting copies all the bends of the original body
that it finds on its way.

Fig. M.7.8.1 shows a sheet body after cut sheet body operation with cut by depth option enabled.
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Fig. M.7.8.1

The SheetSolidHole method adds the MbSheetMetalSolid constructor in the newly constructed body log
containing all data required to execute the operation. The MbSheetMetalSolid constructor is declared in the
cr_sheet sheet metal solid.h file.

M.7.9. Construct a Sheet Body Bend at Edges

The method
MbResultType
BendSheetSolidByEdges ( MbSolid & solid,

const MbeCopyMode sameShell,
const RPArray<MbCurveEdge> & edges,
const bool unbended,
const MbBendByEdgeValues & params,
MbSNameMaker & names,
MbSolid *& result )
makes a bend in a sheet body at specified rectangular edges.
The method input parameters are:

* solid is an original body,

*  sameShell is an original body copy option,

* edges is a set of edges used to form bends,

* unbended is a flag that indicates whether the bends are formed in unbent state,

* params are construction parameters,

* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

A bend is formed according to the parameters given for one or several bends belonging to a flat face of
the sheet body by joining a bend either with a flat extension of the plate edge or without it. The faces or
slopes at side faces can be extended depending on the operation parameters. You can cap the corners for
chains of adjacent edges.

Fig. M.7.9.1 shows a sheet body after bend operation.
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Fig. M.7.9.1

Fig. M.7.9.2 shows a sheet body after bend operation with slope option in the left part and extension
option in the right part

Fig. . M.7.9.2

Fig. M.7.9.3 shows a sheet body with executed bend operation and bend release option.

Fig. . M.7.9.3
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Fig. . M.7.9.4

Fig. M.7.9.4 shows a sheet body after bend operation with multiple edges selected and corner capping
option.

The BendSheetSolidByEdges method adds the MbBendByEdgeSolid constructor in the newly
constructed body log containing all data required to execute the operation. The MbBendByEdgeSolid
constructor is declared in the cr_sheet bend by edge solid.h file.

M.7.10. Forming a Bend Based on a Sketch

The method
MbResultType
SheetSolidJointBend ( MbSolid & solid,

const MbeCopyMode sameShell,
const MbPlacement3D & placement,
const MbContour & contour,
const RPArray<MbCurveEdge> & edges,
const bool unbended,
const MbJointBendValues & params,
MbSNameMaker & names,
PArray< PArray<MbSMBendNames> > & bends,
MbSolid *& result )
forms a sheet body bend based on a sketch.
The method input parameters are:
* solid is an original body,
*  sameShell is an original body copy option,
* placement is a local coordinate system,
* contour is a contour of bends given in the XY plane of the local coordinate system,
* edges is a set of edges used to form bends,
* unbended is a flag that indicates whether the bends are formed in unbent state,
* params are construction parameters,
* names is a namer of constructed faces.

The output parameters of the method are the result constructed body and the constructed bends.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

A combined bend of a sheet body (also called a bend based on sketch) can be constructed at one or
several adjacent straight-line edges of the same sheet face or at several sheet faces located on the different
sides of the same bend. The sketch containing segments and arcs should lie in the plane perpendicular to one
of the construction edges. One end of the edge should lie on its projection onto this plane.

This sketch is applied to each edge involved in the construction process. Based on this sketch and its
copies, sheet bodies are constructed for all edges, forming bends at arcs and non-smooth joints of straight-
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line contour segments, such bends are also formed between a contour and a sheet plate if they do not join
smoothly. The constructed bodies are combined with the original body, and then the angles are capped
according to the given parameters. After execution of this operation, the bends set contains all bends created
by it.

Fig. M.7.10.1 shows a sheet body after bend based on sketch operation.

Fig. M.7.10.1

The SheetSolidJointBend method adds the MbJointBendSolid constructor in the newly constructed body
log containing all data required to execute the operation. The MbJointBendSolid constructor is declared in
the cr_sheet joint bend solid.h file.

M.7.11. Cap a Sheet Body Corner

The method
MbResultType
CloseCorner ( MbSolid & solid,

MbeCopyMode sameShell,
MbCurveEdge * edgePlus,
MbCurveEdge * edgeMinus,
const MbClosedCornerValues & params,
MbSNameMaker & names,
MbSolid *& result )
caps a sheet body corner.
The method input parameters are:
* solid is an original body,
*  sameShell is an original body copy option,
* edgePlus is a bend edge that is conventionally considered positive,
» edgeMinus is a bend edge that is conventionally considered negative,
* params are construction parameters,
* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

If two bends are formed on adjacent edges of the sheet body or on the edges separated by a bend, then the
angle that is formed between them can be filled with material by extending the corresponding sides of these
bends, and that is executed in this operation. Whenever required, trimming can be executed instead of
extension. Parameters permit to define the gap size and the capping types individually for the bends and
individually for their flat extensions. It is also possible to select several corner processing methods if the
corner is capped between the bends formed on the adjacent edges of the same face.
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Fig. M.7.11.1 shows a sheet body with two bends after corner cap operation without bend processing.

Fig. M.7.11.1

Fig. M.7.11.2 shows a sheet body with two bends after corner cap operation with close capping, joining at
the edge and a gap.

Fig. M.7.11.2

Fig. M.7.11.2 shows a sheet body with two bends after corner cap operation with close capping, a gap,
and round corner processing.

278



Fig. M.7.11.3

The CloseCorner method adds the MbClosedCornerSolid constructor in the newly constructed body log
containing all data required to execute the operation. The MbClosedCornerSolid constructor is declared in
the cr_sheet closed corner solid.h file.

M.7.12. Construct a Stamped Body

The method
MbResultType
Stamp ( MbSolid & solid,

MbeCopyMode sameShell,
const MbFace & face,
const MbPlacement3D & placement,
const MbContour & contour,
const MbStampingValues & params,
MbSNameMaker & names,
MbSolid *& result )
stamps a given form on the specified face.
The method input parameters are:
* solid is an original body,
*  sameShell is an original body copy option,
» face is a stamping face,
* placement is a local coordinate system,
* contour is a stamping contour given in the XY plane of the local coordinate system,
* params are construction parameters,
* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

The stamping is constructed based on one closed or non-closed contour lying on a flat sheet face. A
closed sketch may completely or partially lie on a sheet face, and a non-closed sketch should start and end
beyond face boundaries. Stamping is trimmed by the boundaries of the sheet face where the sketch is located.
The sketch defines the shape of the stamping bottom. The stamping can be open, this depends on the
parameters. It means that a sheet plate is punched through along the contour.
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Fig. M.7.12.1 shows a sheet body after the closed stamp operation.

Fig. M.7.12.1
Fig. M.7.12.2 shows a sheet body after open stamp operation.

Fig. M.7.12.2

Fig. M.7.12.3 shows a sheet body after closed stamp operation based on a non-closed sketch.

Fig. M.7.12.3

The Stamp method adds the MbStampSolid constructor in the newly constructed body log containing all
data required to execute the operation. The MbStampSolid constructor is declared in the cr_stamp_solid.h
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file.

M.7.13. Construct a Sheet Body Bead

The method
MbResultType
CreateBead ( MbSolid & solid,

MbeCopyMode sameShell,
const MbFace & face,
const MbPlacement3D & placement,
const RPArray<MbContour> & contours,
const MbBeadValues & params,
MbSNameMaker & names,
MbSolid *& result )
constructs a sheet body bead.
The method input parameters are:

* solid is an original body,

* sameShell is an original body copy option,

e face is a bead face,

* placement is a local coordinate system,

* contour are bead contours given in the XY plane of the local coordinate system,

* params are construction parameters,

* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

The bead is constructed along one or several closed or non-closed contours lying on a flat sheet face. If
the contour extends beyond the boundaries of this face, then the bead is trimmed by its boundaries. The bead
formed along a non-closed contour has ends, their shape is determined by operation parameters.

Fig. M.7.13.1 shows a sheet body after form bead with round section operation with a closed end.

Fig. M.7.13.1

Fig. M.7.13.2 shows a sheet body after form bead operation with U-shaped bead section and an open end.
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Fig. M.7.13.2

Fig. M.7.13.3

Fig. M.7.13.4 shows a sheet body after form bead operation, the bead has a V-shaped section and a
chopped end.
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Fig. M.7.13.4

Fig. M.7.13.4 shows a sheet body after form bead operation, the bead has a round section according to the
sketch that extends beyond the sheet boundaries.

The CreateBead method adds the MbBeadSolid constructor in the newly constructed body log containing
all data required to execute the operation. The MbBeadSolid constructor is declared in the
cr_stamp_bead solid.h file.

M.7.14. Construct a Sheet Body Louver

The method
MbResultType
CreateJalousie ( MbSolid & solid,

MbeCopyMode sameShell,
const MbFace & face,
const MbPlacement3D & placement,
const RPArray<MbLineSegment> & segments,
const MblJalousieValues & params,
MbSNameMaker & names,
MbSolid *& result )
constructs a sheet body louver.
The method input parameters are:

* solid is an original body,

*  sameShell is an original body copy option,

e face is a louver face,

* placement is a local coordinate system,

* segments are louver segments given in the XY plane of the local coordinate system,

* params are construction parameters,

* names is a namer of constructed faces.

The output parameter of the method is the result constructed body.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

Louvers are constructed on one or several segments lying on a flat sheet face. Louvers can't go beyond
the face border or intersect each other. There are two types of louvers: drawn and trimmed louvers. Drawn
louver is a half of an element cut along a straight-line bead, and a trimmed louver looks like a bent plate.

Fig. M.7.14.1 shows a sheet body after louver operation with drawn option.
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Fig. M.7.14.1

Fig. M.7.14.2

Fig. M.7.14.2 shows a sheet body after louver operation with trim option.

The CreateJalousie method adds the MbJalousieSolid constructor in the newly constructed body log
containing all data required to execute the operation. The MbJalousieSolid constructor is declared in the
cr_stamp_jalousie solid.h file.

M.7.15. Restore the Edges of Sheet Body Bends

The method
MbResultType
RestoreSideEdges ( MbSolid & solid,
MbeCopyMode sameShell,
const RPArray<MbFace> & faces,
const bool strict,
PArray<MbSheetMetalBend> & bends,
MbSNameMaker & names,
MbSolid *& result )
restores side edges of sheet body bends.
The method input parameters are:
* solid is an original body,
* sameShell is an original body copy option,
» faces is a set of external bend faces with side edges that should be restored,
*  strict is a restoration strictness flag (false means restoring wherever possible),

284



* names is a namer of constructed faces.

The output parameters of the method are the result constructed body and bends that have restored side
edges.

If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.

The method is declared in the action_sheet.h file.

The method can be used to restore the side edges of bends after operations that could delete them, for
example, cut or filleting. Now side edge restoration method is called automatically during a boolean
operation with the strict flag set to false and during filleting operation.

Fig. M.7.15.1 shows side edges of a bend.

side edges

Fig. M.7.15.1

The RestoreSideEdges method adds the MbRestoredEdgesSolid constructor in the newly constructed
body log containing all data required to execute the operation. The MbRestoredEdgesSolid constructor is
declared in the cr_sheet restored edges solid.h file.

M.7.16. Group Sheet Body Bends

The method
bool
SeparateBendsBySubshells ( const MbSolid & solid,

const RPArray<MbSheetMetalBend> & bends,
const MbName & fixedFaceName,
PArray< RPArray<MbSheetMetalBend> > & bendsGroups,
RPArray<const MbFace> & fixedFaces )
groups bends by sheet body topological parts that they belong to.
The method input parameters are:

* solid is a sheet body,

* bends are body bends,

* fixedFaceName is a name of the fixed face.

The output parameters of the method are bendsGroups, it is a set of bends grouped by the topological
part of the body they belong to, and fixed faces that correspond to these parts fixedFaces.

If successful, the method returns true, otherwise it returns false.

The method is declared in the action_sheet.h file.

The method is used after operations that cut the body into several separate parts in order to determine the
parts that contain the bends and the corresponding portions of the fixed face. The method sets one-to-one
correspondence between bend groups and fixed face parts that correspond to these groups.

Fig. M.7.16.1 shows two groups of bends with their fixed faces.
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Bend?2
FixedFace2

FixedFace1

Fig. M.7.16.1

M.7.17. Couple Sheet Body Bends

The method
bool
CollectBends ( const MbFaceShell & shell,
const RPArray<MbSolid> & innerFaces,
const RPArray<MbSolid> & outerFaces,
PArray<MbSheetMetalBend> & bends )
couples the faces of sheet body bends.
The method input parameters are:
* shell is a set of sheet body faces,
¢ innerFaces are internal bend faces,
¢ outerFaces are external bend faces,
The output parameter of the method is a set of found face pairs bends that form bends.
If successful, the method returns true, otherwise it returns false.
The method is declared in the action_sheet.h file.
The method looks for internal and external faces that form a bend in the unordered set of external and
internal bend faces. A found pair is used to form a bend that is added in the bends set.
Fig. M.7.17.1 shows external and internal faces of a bend.

innerFace

outerFace

Fig. M.7.17.1
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M.7.18. Check Whether the Face Can Be Fixed

The method
bool
IsSuitableForFixed (const MbFace & face )
checks whether it is possible to use the face as a fixed face when the sheet body is bent or when its bend is
unbent.

The checked face is an input parameter of the method.

The method returns true if the face can be selected as a fixed face when a sheet body is bent or when its
bend is unbent, otherwise the method returns false.

The method is declared in the action_sheet.h file.

M.7.19. Look for Faces for a Curve

The method
void
FindCurveFaces ( const RPArray<MbFace> & faces,
const MbCurve3D & curve,
RPArray<MbFace> & curveFaces )
looks for the faces containing a given straight-line curve.
The method input parameters are:

* faces is a set of faces for the search,

* curve is a straight-line curve that lies in some faces of the set.
The output parameter of the method is curveFaces, the set of faces containing the curve.
This method does not return any values.

The method is declared in the action_sheet.h file.
Fig. M.7.19.1 shows two sheet faces located under a segment.

curveFaces

curve

Fig. M.7.19.1

M.7.20. Look for a Sheet Body Face

The method
MbFace *
FindSheetFace ( const MbCurveEdge & edge )
looks for top or bottom sheet body face that contains the given edge.

287



The output parameter of the method is edge, an edge of the sheet face.

When successful, the method returns a pointer to the found face, otherwise the method returns NULL.
The method is declared in the action_sheet.h file.

Top or bottom face of the sheet body is looked for among two faces joining in the edge.

Fig. M.7.20.1 shows a sheet face adjacent to an edge.

sheetFace

Fig. M.7.20.1

M.7.21. Look for a Pair Face for a Sheet Body Bend

The method
MbFace *
FindPairBendFace ( const MbFace & face )
looks for a pair face of the sheet body bend.
The input parameter of the method is face, a face of the sheet body bend.
When successful, the method returns a pointer to the found face, otherwise the method returns NULL.
The method is declared in the action_sheet.h file.
The method looks for a sheet body bend face opposite to the given face.
Fig. M.7.21.1 shows the bend face and its pair face.

bendFace

pairBendFace

Fig. M.7.21.1

M.7.22. Look for a Flat Face in the Sheet Body

The method
MbFace *
GetPairPlanarFaceByEdge ( const MbCurveEdge & edge,
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const double begDistance,
const double endDistance )
looks for a flat face of the sheet body based on a given edge and distances from its ends.
The method input parameters are:
* edge is an edge used in the search,
*  begDistance is a distance from the edge origin,
* endDistance is a distance from the edge endpoint.

When successful, the method returns a pointer to the found face, otherwise the method returns NULL.

The method is declared in the action_sheet.h file.

The method looks for the pair face of the sheet body for the sheet face containing edge. The method is
used for edge bend operation in order to determine sheet thickness in the place where the bend is pasted. The
method is used for sheet bodies with variable thickness if the selected sheet body face has several
corresponding pair faces located at various distances from it. If the begDistance and endDistance distances
are positive, then the indentation is measured in the direction outside along the edge, and if the begDistance
and endDistance distances are negative, then the indentation is measured in the direction inside along the
edge.

Fig. M.7.22.1 shows a flat sheet face found based on the edge and distances from its ends.

endDistance
edge

\

begDistance

pairPlanarFace

Fig. M.7.22.1

M.7.23. Look for a Pair Face in a Sheet Body

The method
MbFace *
GetPairPlanarFaceByCurve ( const MbFace & face,
const MbCurve3D & curve )
looks for a flat pair face in a sheet body based on a straight-line curve lying in the face.
The method input parameters are:
» face is a flat face of the sheet body,
* curve is a straight-line curve lying in it.

When successful, the method returns a pointer to the found face, otherwise the method returns NULL.

The method is declared in the action_sheet.h file.

Look for a sheet body pair face is an auxiliary method for the method that forms a bend at the line. The
method is used for sheet bodies with variable thicknesses, if the selected sheet face has several corresponding
pair faces located at various distances from it.

Fig. M.7.23.1 shows a flat sheet face found based on a face opposite to it and a curve lying in it.
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curve

pairPlaneFace

Fig. M.7.23.1
The method
MbFace *
GetPairPlanarFaceByContour ( const MbFaceShell & shell,
const MbFace& face,

const MbPlacement3D & place,
const RPArray<const MbCurve > & segments )
looks for a flat pair face of a sheet body based on a set of contour elements.

The method input parameters are:

* shell is a set of sheet body faces,

» face is a sheet body face,

* place is a local coordinate system in the face,

* segments are curves lying in the XY plane of the place local coordinate system.

When successful, the method returns a pointer to the found face, otherwise the method returns NULL.

The method is declared in the action_sheet.h file.

Looking for a sheet body pair face is an auxiliary method for sheet body constructing functions that are
based on contours. The method is used for sheet bodies with variable thicknesses, if the selected sheet face
has several corresponding pair faces located at various distances from it.

Fig. M.7.23.2 shows a flat sheet face found based on a face opposite to it and a contour lying in it.

contour

pairPlanarFace

Fig. M.7.23.2

The method
MbFace *
GetPairPlanarFace ( const MbFaceShell * shell,
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const MbFace & face )
looks for a pair face based on the given face of the sheet body.
The method input parameters are:
* shell is a set of sheet body faces,
» face is a sheet body face,

When successful, the method returns a pointer to the found face, otherwise the method returns NULL.

The method is declared in the action_sheet.h file.

The search is executed first over the edges of the external face cycle. If the search fails, then the vertices
of that cycle are looked for. If the face is not found, then the method looks through all connected faces or
faces in the shell set. In the latter case, the faces that are located closer are looked for first.

Fig. M.7.23.3 shows a flat sheet face found by its opposite flat sheet face.

planarFace

pairPlanarFace

Fig. M.7.23.3

M.7.24. Determine the Distance Between Similar Faces

The method
double
GetDistancelfSameAndOpposite ( const MbFace & facel,

const MbFace * face2 )
determines the distance between a pair of similar leaf faces.

The method input parameters are:

¢ facel is the first face,
¢ face2 is the second face,

If successful, the method returns the distance between the faces, otherwise it returns zero.

The method is declared in the action_sheet.h file.

Pairs of flat, cylindrical and conical faces are considered similar. As for ruled bends, a pair of ruled offset
faces is considered similar if their normals are collinear and have opposite directions. The distance is
considered positive if the faces are located at the side opposite to the direction of the normal, otherwise it is
considered negative.

Fig. M.7.24.1 shows a pair of similar faces and a distance between them.
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Fig. M.7.24.1

M.7.25. Look for Similar Bends

The method
void
GetSimilarCylindricBends ( const MbFaceShell & shell,

PArray<MbSheetMetalBend> & bends )

looks for similar bends.

The input parameters of the method are a set of sheet body faces shell and the array of bends named
bends, and similar bends should be found for them.

The output parameter of the method is a set of found similar bends named bends together with the
original bends.

This method does not return any values.

The method is declared in the action_sheet.h file.

The method looks for bent cylindrical, conical, and ruled bends, that should be added to the bends from
the bends set in order to unbend them later on, i.e. it looks for jointly unbent bends only.

Fig. M.7.25.1 shows a pair of similar bends that can only be bent or unbent together.

similarBend

bend

Fig. M.7.25.1

292



M.7.26. Look for a Tangency Point in a Sheet Body Bend

The method
bool
CalculateTangentPoint ( const MbFace & face,
const MbPlane & plane,
MbCartPoint & point )

calculates a tangency point for the sheet body bending/unbending.
The method input parameters are:
» face is a sheet body face that contains the tangency point,
* plane is a tangential plane,
* point is a tangency point.
The output parameter of the method is a tangency point.
If successful, the method returns true, otherwise it returns false.
The method is declared in the action_sheet.h file.
point can lie in the face (0.0<=x<=1.0 and 0.0<=y<=1.0) or be located beyond its boundaries. In the first
case, the tangency point is recalculated to the coordinates of the surface lying under the face, and in the
second case the method finds one of tangency points of the surface lying under face and the plane.

M.7.27. Look for a Bend Centerline

The method
bool
CalculateConicAxisLine ( const MbFace & face,
MbLineSegment & axis )
calculates the centerline of unbent conical bend.
The input parameter of the method is a face of unbent conical bend of the sheet body.
The output parameter of the method is an axis centerline.
If successful, the method returns true, otherwise it returns false.
The method returns the centerline in the coordinates of the flat face parametric field.
The method is declared in the action_sheet.h file.
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M.8. AUXILIARY METHODS

In certain cases need to be calculated parameters required for the construction of bodies or other elements.
This chapter lists the methods that perform auxiliary calculations and constructs.

M.8.1. Calculating Extrusion Body Depth or Rotation Body Angle

The method
bool
GetSweptValue ( const MbSweptData & sweptData,
const MbAxis3D & axis,
const MbVector3D & direction,
const bool rotation,
const bool operationDirection,
const MbCartPoint3D & point,
double & value )
calculates the extrusion depth or the rotation angle for further construction of the body by extrusion or
rotation of the generatrix.
The method input parameters are:
* sweptData is generatrix data,
* axis is a rotation axis (for rotation calculation),
* direction is an extrusion direction (it is used to calculate extrusion),
* rotation is a calculation type flag: rotation (true), or extrusion (false),
* operationDirection is a direction of the following operation execution: forward (true), or backward
(false),
e point is a point, to which the generatrix should be extruded or rotated.
The output parameter of the method is value, this is the extrusion depth or rotation angle.
If the calculation is successful, the method returns true, otherwise it returns false.
This method is auxiliary for the ExtrusionSolid, RevolutionSolid, ExtrusionResult and
RevolutionResult functions.

M.8.2. Determining the Curve Image for Extrusion or Rotation

The method

GetSweptlmagePosition ( const MbCurve3D & curve,
const MbSurface & surface,
const MbVector3D & direction,
const MbAxis3D & axis,
const bool rotation,
MbCartPoint& imagePosition,
MbResultType & resType )
calculates the position of the generatrix curve point image on a surface to further construct the body by
extrusion or rotation of the generatrix up to the given surface.
The method input parameters are:
* curve is a generatrix,
* surface is a surface, up to which the curve is extruded or rotated,
* direction is an extrusion direction (it is used to calculate extrusion),
* axis is a rotation axis (it is used to calculate rotation),
* rotation is a calculation type flag: rotation (true) or extrusion (false).
The method output parameters are as follows:
* imagePosition is a point on the surface where the image of the generatrix lies,
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* resType is an operation result code: if successful, the method returns rt_Success, otherwise the
method returns an error code from the MbResultType enumeration.
This method is auxiliary for the ExtrusionSolid, RevolutionSolid, ExtrusionResult and
RevolutionResult functions.

M.8.3. Determining Extrusion or Rotation Parameters

The method
GetRangeToSurface ( const MbSurface & surface,
const MbCurve3D & curve,
const MbVector3D & direction,
const MbAxis3D & axis,
const bool rotation,
const bool operationDirection,
const MbCartPoint & imagePosition,
double range[2],
MbRect & rectOnSurface,
MbResultType & resType )
calculates the extrusion depths in forward and backward directions, or the rotation angles in forward or
backward directions to further construct the body by extruding or rotating its generatrix up to the selected
surface, and also calculates the curve image size.
The method input parameters are:
» surface is a surface, up to which the curve is extruded or rotated,
* curve is a generatrix,
* direction is an extrusion direction (it is used to calculate extrusion),
* axis is a rotation axis (it is used to calculate rotation),
* rotation is a calculation type flag: rotation (true), or extrusion (false),
» operationDirection is a direction of the following operation execution: forward (true), or backward
(false),
* imagePosition is a point on the surface where the image of the generatrix lies.
The method output parameters are as follows:
* range is distances to the surface: range[0] is a distance in reverse direction, range[1] is a distance in
forward direction,
* rectOnSurface is a size of the curve image on surface,
* resType is an operation result code: if successful, the method returns rt_Success, otherwise the
method returns an error code from the MbResultType enumeration.
This method is auxiliary for the ExtrusionSolid, RevolutionSolid, ExtrusionResult and
RevolutionResult functions.

M.8.4. Determine the Orientation of the Generatrix

The method
double
AreaSign ( const MbCurve3D & curve,
const MbAxis3D & axis,
const MbVector3D & direction,
bool rotation )
calculates the area of the curve projection on the virtual coordinate plane to determine the orientation of the
generatrix for further construction of the body by extrusion or rotation of the generatrix. A non-closed
generatrix will be closed by a segment.
The method input parameters are:
* curve is a generatrix,
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* axis is a rotation axis (it is used to calculate rotation),
* direction is an extrusion direction (it is used to calculate extrusion),
* rotation is a calculation type flag: rotation (true) or extrusion (false).
The method output parameter is the curve projection surface.
This method is auxiliary for the ExtrusionSolid, RevolutionSolid, ExtrusionResult and
RevolutionResult functions.

M.8.5. Determine the Orientation of the Secant Surface

The method
AnalyzeSurfaceRelationToSweptOperation ( const MbSurface & surface,

const MbCartPoint & imagePosition,

const MbCurve3D & curve,

const MbVector3D & direction,

const MbAxis3D & axis,

const bool rotation,

bool operationDirection,

bool & relativeSense,

MbResultType & resType )
determines the orientation of the secant surface relative to the body, it is constructed by extruding or rotating
the generatrix up to the given surface.

The method input parameters are:
» surface is a surface, up to which the curve is extruded or rotated,
* imagePosition is a point on the surface where the generatrix image lies,
* curve is a generatrix,
* direction is an extrusion direction (it is used to calculate extrusion),
* axis is a rotation axis (it is used to calculate rotation)
* rotation is a calculation type flag: rotation (true), or extrusion (false),
* operationDirection is a direction of the following operation execution: forward (true) or backward
(false).
The method output parameters are as follows:

* relativeSense is a surface orientation for the extrusion or rotation operation,

* resType is an operation result code: if successful, the method returns rt_Success, otherwise the
method returns an error code from the MbResultType enumeration.

This method is auxiliary for the ExtrusionSolid, RevolutionSolid, ExtrusionResult and
RevolutionResult functions.

M.8.6. Sweep Body Curve Orientation

The method
MbResultType
EvolutionNormalize ( const MbPlacement3D & place,
const MbContour & contour,
const MbCurve3D & guide,
EvolutionValues & parameters,
MbAxis3D & axis,
double & angle,
VERSION version )
orients the generating contour and the guiding curve to construct a sweep body.
The method input parameters are:
* place is a local coordinate system of the generating contour,
* contour is a generating contour,
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* guide is a guiding curve,
* parameters are sweep operation parameters,
e version is an operation version.
The method output parameters are as follows:
* axis is an axis of additional generatrix rotation,
* angle is an angle of additional generatrix rotation,
If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.
This method is auxiliary for the EvolutionSolid and EvolutionResult.

M.8.7. Copy Guiding Curve of the Sweep Body

The method
MbCurve3D *
TrimClosedSpine ( MbCurve3D & curve, double ¢)
copies a closed curve that begins in a point defined by parameter ¢.
The method input parameters are:
* curve is a guiding curve,
* tisacurve parameter.
If successful, the method returns a constructed copy of the curve that begins in the given point, otherwise
the method returns null.
This method is auxiliary for the EvolutionSolid and EvolutionResult.

M.8.8. Constructing a Rib

The method
MbResultType
RibElement ( const MbSolid & solid,
const MbPlacement3D & place,
MbContour & contour,
size t index,
RibValues & params,
const MbSNameMaker & names,
MbSolid *& result )
constructs a rib for the original body.
The method input parameters are:
e solid is an original body,
* sameShell is an original body copying option,
* place is a local coordinate system, its XY plane is a symmetry plane,
* contour is a shape-generating contour in XY plane of the local coordinate system,
* index is a segment number in the contour,
* params are the rib parameters,
* names is namer of rib faces.
The output parameter of the method is the result constructed body.
If successful, the method returns rt Success, otherwise the method returns an error code from the
MbResultType enumeration.
The method constructs a separate rib, but it doesn't connect it to the original body.

M.8.9. Check a Curve for Ruled Body Construction

The method
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CheckRuledCurve ( const MbCurve3D & curvel,
const MbCurve3D & curve2,
bool & isInverted,
bool & i1sShifted,
VERSION version)
checks whether the second curve can be used together with the first curve to construct a non-closed ruled
body, and modifies the second curve as required.
The method input parameters are:
e curvel is the first curve,
e curve2 is the second curve,
* version is an operation version.
The method output parameters are as follows: the isInverted flag indicates whether the direction of the
second curve was inverted, the isShifted flag indicates whether the second curve beginning point was shifted.
The method does not return any value.
This method is an auxiliary method used to construct the RuledShell non-closed ruled body based on two
curves.

M.8.10. Check Curve Parameters for Ruled Body Construction

The method
bool
CheckRuledParams ( const MbCurve3D & curve,
SArray<double> & params,
bool isAscending )
checks the curve parameters and normalizes the closed curve parameters.
The method input parameters are:
e curveisacurve,
* params is a set of curve parameters,
* isAscending is a flag that indicates whether set parameters are listed in ascending order.
The output parameter of the method is params, this is a set of curve parameters.
If successful, the method returns true, otherwise it returns false.
This method is an auxiliary method for constructing the RuledShell non-closed ruled body.

M.8.11. Check Curve for Constructing a Joint Body

The method
CheckJoinedCurve ( const MbCurve3D & curvel,
const MbCurve3D & curve2,
bool & isInverted1,
bool & isShiftedl,
VERSION version )
checks whether the second curve can be used together with the first curve to construct a non-closed joint
body, and modifies the second curve if required.
The method input parameters are:
e curvel is the first curve,
* curve2 is the second curve,
* version is an operation version.
The method output parameters are as follows: the isInverted flag indicates whether the direction of the
second curve was inverted, the isShifted flag indicates whether the second curve beginning point was shifted.
The method does not return any value.
This method is auxiliary for the method that constructs a non-closed joint body based on two JoinShell
curves.
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M.8.12. Check Curve Parameters for the Joint Body Construction

The method
bool
CheckJoinedParams ( const MbCurve3D & curve,
SArray<double> & params,
bool isAscending )
checks the curve parameters and normalizes the closed curve parameters.
The method input parameters are:
* curveisa curve,
* params is a set of curve parameters,
* isAscending is a flag that indicates whether set parameters are listed in ascending order.
The output parameter of the method is params, it is a set of curve parameters.
If successful, the method returns true, otherwise it returns false.
This method is an auxiliary method for constructing the JoinShell non-closed body.

M.8.13. Construct a Curve from a Set of Edges

The method
MbCurve3D *
CreateJoinedCurve ( const RPArray<MbCurveEdge> & edges,
const SArray<bool> & orientations,
const MbMatrix3D & matrix,
MbResultType & result )
constructs a curve from a set of edges.
The method input parameters are:
* edges is a set of edges,
* orients is an edge orientation,
* matrix is an edge conversion matrix.
The output parameter of this method is the result value from the MbResultType enumeration.
When successful, the method returns a pointer to the constructed curve, otherwise the method returns
null.
This method is an auxiliary method for constructing the JoinShell non-closed body.
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O.1. ELEMENTARY OBJECTS

Elementary objects are C3D kernel geometric objects that describe the following mathematical entities:
a vector, a point, an axis, local coordinate system, transformation matrix, bounding box and bounding
rectangle. Elementary objects have simple data structures. Elementary object is a tool and building block for
more complex geometric objects, so they are used by all modules of the geometric kernel.

0O.1.1. MbVector3D Vector in Three-Dimensional Space

MbVector3D class is declared in mb_vector3d.h file.

MbVector3D vector describes movement or direction in three-dimensional space. It is determined by x, y
and z components in Cartesian coordinate system.

We will use one or more bold lower-case Roman letters for 3D vectors; all vector components will be
placed in square brackets, for example:

vector =[x y z|.

MbVector3D vector is not attached to any point in the space, so it does not have a method that moves in
space.

0.1.2. MbCartPoint3D Radius Vector of Point in 3D Space

MbCartPoint3D class is declared in mb_cart_point3d.h file.

MbCartPoint3D radius vector (Cartesian point) describes location in 3D space; it is determined by x, y
and z components in Cartesian coordinate system. Radius vector describes a transformation that moves the
initial point of the Cartesian coordinate system to a point in space having specified coordinates in the
Cartesian coordinate system.

We will use one or more bold lower-case Roman letters for points in 3D space; point coordinates will be
placed in square brackets, for example:

point =[x y z].

Unlike a vector, a radius vector is associated with the origin of coordinates. Coordinates of
MbCartPoint3D radius vector and MbVector3Dundergo different changes in case of transition from one
coordinate system to other, and also when their position in space is changed using the following methods:
MbCartPoint3D & Transform( constMbMatrix3D& ),

MbCartPoint3D & Rotate( const MbAxis3D &, double angle ),
MbCartPoint3D & Move( const MbVector3D& ).
Mentioned methods return a reference to itself after transformation.

0.1.3. MbHomogenius3D Homogenius Vector in Three-Dimensional Space

MbHomogenius3D class is declared in mb_homogenius3d.h file.

MbHomogenius3D homogenius radius vector describes location of a point in 3D space; it is defined by
four coordinates: x, y, z and w. The fourth coordinate is called weight. homogenius radius vector is used to
calculate radius vector for B-curves and B-surfaces constructed based on B-splines. x., yw, zw, W coordinates
of MbHomogenius3D homogenius radius vector are linked with x, y, z coordinates of the radius vector; these
relationships are described by the following equations:
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For MbMatrix3D multiplication operations, we can assume that vectors and points also have the fourth
coordinate; it is equal to zero for MbVector3Dand it is equal to one for MbCartPoint3D.

0.1.4. MbPlacement3D Local Coordinate System

MbPlacement3D class is declared in mb_placement3d.h file.
Local coordinate system in MbPlacement3D three-dimensional space is described by origin initial point
and three non-coplanar vectors (axisX, axisY and axisZ). Please see Figure O.1.4.1.

axis/.

origin axisY

axisX

Fig. 0.1.4.1.

In most cases, right-handed coordinate system is used and the vectors are orthonormal. The coordinate
system can become left-handed and non-orthonormal after transformation. The following methods are used
to request information on the state of coordinate system:

bool IsLeft() the method permits to find out whether the coordinate system is left-handed,

bool IsRight() the method permits to find out whether the coordinate system is right-handed,

bool IsTranslation() the method permits to find out whether origin coordinate system has an offset,

bool IsRotation() the method permits to find out whether the coordinate system is rotated,

bool IsOrt() the method permits to find out whether the coordinate system is orthogonal and not normalized,
bool IsSingle() the method permits to find out whether the coordinate system coincides with the coordinate
system where it was defined,

bool IsNormal() the method permits to find out whether the coordinate system is orthonormal,

bool IsOrtogonal() the method permits to find out whether the coordinate system is orthogonal,

bool IsCircular() the method permits to find out whether the coordinate system is orthogonal and has axisX
and axisY with equal length; a circle in this coordinate system remains a circle,

bool IsIsotropic() the method permits to find out whether the coordinate system is orthogonal and has axisX,
axisY and axisZ axes with equal length; objects in this coordinate system are not distorted, they are rather
scaled,

bool IsAffine() the method permits to find out whether the coordinate system is affine (otherwise, it is
orthonormal).

Local coordinate system is Cartesian. A point in a Cartesian coordinate system is defined by three
coordinates: x, y and z. Local system can be cylindrical or spherical coordinate system.

If you use MbPlacement3D local coordinate system as a cylindrical system, then Z axis of the cylindrical
coordinate system coincides with Z axis of the Cartesian one, polar axis of the cylindrical system coincides
with X axis of the Cartesian system, and polar angle of the cylindrical system is measured from X axis
towards Y axis. x coordinate plays the role of projection of radius vector to XY plane; y coordinate plays the
role of polar angle.

If you use MbPlacement3D local coordinate system as a spherical system, then the plane of spherical
coordinate system coincides with XY plane of the Cartesian system, and longitude of spherical system is
measured from X axis towards Y axis. x coordinate plays the role of the length of radius vector; y coordinate
plays the role of longitude.
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0.1.5. MbMatrix3D Extended Matrix in Three-Dimensional Space

MbMatrix3D class is declared in mb_matrix3d.h file.

In a three-dimensional space, Matrix3D matrix describes transformation from one coordinate system to
other one. It is a 4-by-4 matrix. Let the specified coordinate system have a local affine coordinate system
with origin in r point with 1, 2, 3 coordinates and a=[a: a2 a3], b=[b:1 b2 b3] and ¢=[c1 c2 ¢3] basis vectors.
a, b and c¢ vectors should be linearly independent, but they may be non-orthogonal and may have arbitrary
length. Matrix3D matrix for transformation from the local coordinate system to the specified one looks as
follows

a a, a, 0
Mo b b, b 0
¢ ¢ ¢ 0
nonon |l

We will use bold capital Roman letters to denote extended matrices in 3D space, for example: M. Please
note that each of a, b and ¢ basis vectors and r initial point of the local coordinate system has a
corresponding row in the matrix that executes transformation from the local coordinate system to the
specified one.

MbMatrix3D is an extended matrix that works with uniform radius vectors and MbHomogenius3D in
three-dimensional space.

If MbCartPoint3D radius vector is transformed using MbMatrix3D matrix, then the point should be
assigned the forth coordinate equal to one. Let the point with xi, x2, x3 coordinates in local coordinate system
have pi1, p2, ps coordinates in specified coordinate system. If MbMatrix3D extended matrix is used, then
these coordinates will be related as follows:

a a a 0
b b, b 0
[Pl P> P l]z[xl Xy X3 1]‘ Lo
¢ ¢ ¢ 0
nornon o1

Please note that 3D radius vector is multiplied by MbMatrix3D extended matrix on the right.

If MbVector3D vector is transformed using MbMatrix3D matrix, then the vector should have the forth
coordinate equal to zero. Let a vector with components yi, 32, 3 in local coordinate system have 71, r2, 73
components in the specified coordinate system. If MbMatrix3D extended matrix is used, then these
components will be related as follows:

a a, a; 0

b b, by O
[vononool=lv 0, 2o0]

¢ ¢ ¢ 0

nonor 1

Please note that 3D vector is multiplied by MbMatrix3D extended matrix on the right.
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0.1.6. MbCube Bounding Box in Three-Dimensional Space

MbCube class is declared in mb_cube.h file.

MbCube bounding box describes the dimensions of extended object (curve, surface, body or several
bodies) in 3D space and it is defined by two points: pmin and pmax. The faces of bounding box are parallel
to the planes of the coordinate system where the cube is described. pmin and pmax points describe two

opposite vertexes of the bounding box with minimal and maximal coordinates respectively. Please see Figure
O.l1.6.1.

pmax

pmin

K

Fig. 0.1.6.1.

If the dimensions of extended object are not set, then the bounding box is considered empty and
pmin=[10-3% 10-3%° 103%] pmax=[-103% —10-3% —10-3%]. The following condition holds for an empty
bounding box: pmin>pmax; I[sEmpty() method returns true.

0O.1.7. MbRect1D Univariate Dimension

MbRect1D class is declared in mb_rect1d.h file.
MbRect1D univariate dimension describes one-dimensional area (for example, curve parameter definition
area); it is defined by two values: zmin and zmax. Please see Figure O.1.7.1.

Zmin Zmax

Fig. 0.1.7.1.

zmin and zmax values describe leading and trailing edges of the area. If one-dimensional area is not
defined, then univariate dimension is considered empty and zmin>zmax. If univariate dimension is empty,
then IsEmpty() method returns true.
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0.1.8. MbVector Vector in Two-Dimensional Space

MbVector class is declared in mb_vector.h file.

MbVector vector describes movement or direction in two-dimensional space. The vector is determined by
x and y components in a Cartesian coordinate system.

We will use one or more bold and italic lower-case Roman letters for vectors in two-dimensional space;
and vector components will be placed in square brackets, for example:

vector =[x y].

MbVector vector is not attached to any points in space, so it does not have a method used to move it in the
space.

0.1.9. MbDirection Normalized Vector in Two-Dimensional Space

MbDirection class is declared in mb_vector.h file.

MbDirection normalized vector describes direction or rotation angle in 2D space; it is defined by two
components (ax and ay) in Cartesian coordinate system. The length of normalized vector is equal to one, and
its components are sine and cosine of the angle between OX axis and the normalized vector. Therefore,
ax=cos(a), ay=sin(a), where o is the angle between the normalized vector and x-axis of the coordinate
system.

0.1.10. MbCartPoint Point Radius Vector in Two-Dimensional Space

MbCartPoint class is declared in mb_cart_point.h file.

MbCartPoint3D (Cartesian point) radius vector describes a location in 2D space. This vector is
determined by x and y components in Cartesian coordinate system. Radius vector describes a transformation
that moves the initial point of the Cartesian coordinate system to a point in space having specified
coordinates in the Cartesian coordinate system.

We will use one or more bold and italic lower-case Roman letters for points in 3D space; point
coordinates will be placed in square brackets, for example:

point =[x y].

Unlike a vector, a radius vector is associated with the origin of coordinates. Coordinates of MbCartPoint
radius vector and MbVector vector components undergo different changes during transition from one
coordinate system to other, as well as when their position in space is changed using the following methods:
void Transform( const MbMatrix& ),
void Rotate( const MbCartPoint &, double angle ),
void Move( const MbVector& ).

0.1.11. MbHomogenius Homogenios Vector in Two-Dimensional Space

MbHomogenius class is declared in mb_homogenius.h file.

MbHomogenius extended radius vector describes location of a point in 2D space; it is defined by three
coordinates: x, y and w. The third coordinate indicates weight. extended radius vector is used to calculate a
radius vector of B-curves constructed on the basis of B-splines. x, yw, w coordinates of MbHomogenius
extended radius vector are linked to x and y coordinates of the MbCartPoint radius vector MbCartPoint by
the following equations:
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As for multiplication by an extended matrix MbMatrix, we can assume that 2D vectors and points also
have the third coordinate, which is zero for MbVector vector and one for MbCartPoint.

0.1.12. MbPlacement Local Coordinate System

MbPlacement class is declared in mb_placement.h file.
Local coordinate system in MbPlacement 2D space is described by origin initial point and two non-
parallel vectors (axisX and axisY). Please see Figure O.1.12.1.

axisY
origin axisX
Fig. O.1.12.1.

In most cases, right-handed coordinate system and orthonormal vectors are used. The coordinate system
can become left-handed and non-orthonormal after transformation. The following methods are used to
request information on the state of coordinate system:
bool IsLeft() the method permits to find out whether the coordinate system is left-handed,
bool IsSingle() the method permits to find out whether the coordinate system coincides with the coordinate
system where it was defined,
bool IsNormal() the method permits to find out whether the coordinate system is orthonormal,
bool IsCircular() the method permits to find out whether the coordinate system is orthogonal and has axisX
and axisY with equal length; a circle in this coordinate system remains a circle,
bool IsIsotropic() the method permits to find out whether the coordinate system is orthogonal and has axisX
and axisY of equal length; objects in this coordinate system are not distorted, they are rather scaled,
bool IsAffine() the method permits to find out whether the coordinate system is affine (otherwise, it is
orthonormal).

Local coordinate system is Cartesian.

0.1.13. MbMatrix Extended Matrix in Two-Dimensional Space

MbMatrix3D class is declared in mb_matrix3d.h file.

In 2D space, MbMatrix matrix describes transformation from one coordinate system to other one. It is 3-
by-3 matrix. Let specified coordinate system have a local affine coordinate system with origin at r point with
r1 and 7 » coordinates and a=[a: a2] and b=[b: b,] basis vectors. a and b vectors shouldn't be collinear, but
they may be non-orthogonal and they may have arbitrary length. MbMatrix matrix used for transformation
from the local coordinate system to the specified one looks as follows

a a 0
M=\b b 0]
nor o1



We will use bold and italic capital Roman letters to denote an extended matrix in 3D space, for example:
M. Please note that each of @ and b basis vectors and r initial point of the local coordinate system has a
corresponding row in the matrix that executes transformation from the local coordinate system to the
specified coordinate system.

MbMatrix is an extended matrix that works with uniform radius vectors and homogeneous vectors
MbHomogenius in 2D space.

When a radius vector MbCartPoint is transformed using MbMatrix matrix, the point should be assigned
the third coordinate that should be equal to one. Let the point with x; and x2 coordinates in the local
coordinate system have pi and p» coordinates in the specified coordinate system. If MbMatrix extended
matrix is used, then these coordinates will be related as follows:

a a, O
[p1 P> 1]:[x1 X5 1]' b b, 0].
nono 1

Please note that 2D radius vector is multiplied by MbMatrix extended matrix on the right.

If vector MbVector is transformed using MbMatrix matrix, then the vector should have the forth
coordinate that should be equal to zero. Let a vector with y; and y» components in local coordinate system
have r and > components in the specified coordinate system. If MbMatrix extended matrix is used, then
these components will be related as follows:

a a, 0
[7”1 r O]Z[yl Y2 0]' b b, 0
n o1

Please note that 2D vector is multiplied by MB Matrix extended matrix on the right.

0.1.14. MbRect Bounding Rectangle in Two-Dimensional Space

MbRect class is declared in mb_rect.h file.

MbRect bounding rectangle describes the dimensions of extended object (one or several curves) in 2D
space, it is defined by four points: left, right, bottom and top. The sides of the bounding rectangle are parallel
to the axes of the coordinate system where the rectangle is described. leff and right values describe minimum
and maximum abscissas of the bounding rectangle; bottom and top values describe minimum and maximum
ordinates of the bounding rectangle. Please see Figure O.1.14.1.

top

left right

bottom

Fig. 0.1.14.1.

If the dimensions of an extended object are not determined, then the bounding rectangle is considered
empty and left>right, bottom>top. If the bounding rectangle is empty, then IsEmpty() method returns true.
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0.2. GEOMETRICAL OBJECTS

A geometrical object describes the form of the modeled object. Geometric objects include curves,
surfaces, bodies as well as topological objects that describe geometric properties that don't depend on
quantitative features and describe permanently interconnected points in 3D space. There are two-dimensional
and three-dimensional geometric objects. Two-dimensional objects are used to work with definition areas of
surface parameters, as well for work with planes of local 3D coordinate systems. Parent classes of
geometrical objects are described in this part.

0.2.1. MbRefltem Reference Counter

MbRefltem class is declared in reference item.h file.

MbRefltem class is described by the number of its useCount owners; it is a counter of objects that own
this object.

All geometrical objects of C3D kernel are divided into three groups: two-dimensional geometrical
objects, three-dimensional geometrical objects, and topological objects. All geometrical objects are inheritors
of MbRefltem and TapeBase classes. Please see Figure O.2.1.1.

| MbRefltem |
A
| TapeBasel

il Ty

—| MbSpaceltem

S, —

o~ —

MbTopltem |[——

o —

— —

MbPlaneltem

o '

.

L——— MbFunction

S, —

Figure 0.2.1.1.

TapeBase class opens a stream for its inheritors for both reading and writing.

The following geometrical objects are inheritors of MbRefltem and TapeBase classes:
MbSpaceltem — base abstract class of three-dimensional geometrical objects,
MbTopltem — base abstract class of topological objects,

MbPIlaneltem — base abstract class of two-dimensional geometrical objects,
MbFunction — base abstract class of scalar functions.

Reference counter provides correct operation of classes and methods that contain pointers to geometrical
objects. If a certain class contains a pointer to a geometrical object, then it should increase reference counter
of the geometrical object by one in the constructor using AddRef() method; and it should call Release()
method for the geometrical object that reduces geometrical object reference counter by one in destructor. If a
reference counter becomes zero then the geometrical object is deleted. DecRef() method decreases reference
counter of geometrical object by one. MbRefltem class is processed by MbRegDuplicate duplication
registrar and MbRegTransform transformation registrar.

MbeRefType RefType()
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method returns registration type of the object that uses the reference counter.

0.2.2. MbSpaceltem Three-Dimensional Geometrical Object

MbSpaceltem class is declared in space item.h file.

MbSpaceltem is an inheritor of MbRefltem and TapeBase classes and it is a parent class for three-
dimensional geometrical objects.

Three-dimensional geometrical objects of C3D kernel include: a point, curves, surfaces, auxiliary objects
and objects of geometrical model. Please see Figure 0.2.2.1.

[MhSp aceltem

1 - [MbTransactions ] [MbAttrContainm]

!

—

Mbltem

L | MbSurface
I MbCurve3D |
l MbPoint3D |

Mbl.egend

Figure 0.2.2.1.

The following families of 3D geometrical objects are inheritors of MbSpaceltem class:

MbPoint3D — a point or a curve,

MbSurface — a surface,

Mblegend — an auxiliary geometrical object,
Mbltem — an object of geometrical model.

The main methods of 3D geometrical objects are:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ), MbMatrix3D
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const & m, MbRegTransform * iReg = NULL ).

These methods are used to transform a geometrical object. MbRegTransform registrar is used to prevent
multiple transformations of embedded objects. If an object contains pointers or references to other objects,
then all embedded objects are also transformed. The registrar should be used for serial transformations of
several interrelated objects if relationships between them are due to pointers or references to shared objects
present in them. If the registar is not used during transformation, then multiple transformations of common
embedded objects are possible.

In addition, all geometrical objects have methods that permit to copy, check for coincidence, check
whether it's possible to make objects coinciding and to make them coinciding:

MbSpaceltem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceltem & item ),

bool IsSimilar( const MbSpaceltem & item ),

bool SetEqual( const MbSpaceltem & item ).
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MbRegDuplicate registrar is used to prevent multiple copying of embedded objects. If an object contains
pointers or references to other objects, all embedded objects are also copied. The registrar should be used to
copy several interrelated objects in serial manner if the objects have pointers or references to shared objects.
If the registar is not used for copying, then you can get a set of copies of the same embedded object instead
of its single copy.

The following methods are used to identify the type of geometrical object:

MbeSpaceType IsA(),

MbeSpaceType Type(),

MbeSpaceType Family().

These methods return a type from the enumeration of three-dimensional geometric objects.

Methods
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties )
ensure that internal data of geometrical objects is accessible and editable. GetProperties method adds object
data to properties set as inheritors of MbProperty class.

CalculateWire( double sag, MbMesh & mesh) method constructs a polygonal copy of a geometrical
object that is used for visualization.

0.2.3. MbTopItem Topological Object

MbTopltem class is declared in topology item.h file.

MbTopltem class is an inheritor of MbRefltem and TapeBase classes and it is a parent class for
topological objects. Topological objects contain a class of named topological objects MbTopologyltem that
inherits MbTopltem and MbAttributeContainer classes.MbTopologyltem class is also declared in
topology _item.h file.

C3D geometric kernel works with topological objects shown in Figure O.2.3.1.
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Figure 0.2.3.1.

The following topological objects are the inheritors of MbTopltem class:
MbFaceShell — a set of faces
MbLoop — an edge cycle at face border
MbOrientedEdge — an oriented cycle edge
MbTopologyltem — a named topological object.
The following objects inherit MbTopologyltem named topological object:
MbVertex — a vertex
MbEdge — an edge
MbFace — a face.
An edge describing a smooth section that either joins two faces or is a face edge has MbCurveEdge inheritor.

MbAttrContainer attribute container provides work of named topological objects with attributes.

The main methods of named topological objects are listed below:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ).

These methods are used when a topological object is transformed; they are also used to work with the
name and attributes. MbRegTransform registrar is used to prevent multiple transformations of embedded
objects. If an object contains pointers or references to other objects, then all embedded objects are also
transformed. The registrar should be used for serial transformations of several interrelated objects if
relationships between them are due to pointers or references to shared objects present in them. If the registar
is not used during transformation, then multiple transformations of common embedded objects are possible.

A topological object has IsA() method used to identify its type. The method returns a type from
MbeTopologyType enumeration of topological objects.
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0.2.4. MbPlaneltem Two-Dimensional Geometrical Object

MbPlaneltem class is declared in plane item.h file.

MbPlaneltem is an inheritor of MbRefltem and TapeBase classes and it is a parent class for all 2D
geometrical objects.

C3D kernel includes the following 2D geometrical objects: curves, a multiline and region. Please see
Figure 0.2.4.1.

[MbReﬂtem] [TapeBaseJ
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[ MbPlaneltem
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Figure 0.2.4.1.

The following families of 2D geometrical objects are inheritors of MbPlaneltem class:

MbCurve — a two-dimensional curve,
MbMultiline — a multiline,
MbRegion — a region.

The main methods of 2D geometrical objects are:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL, ... ),
void Rotate( const MbCartPoint & p, const MbDirection & angle, MbRegTransform * iReg = NULL, ... ),
void Transform( const MbMatrix & m, MbRegTransform * iReg = NULL, ... ).

These methods are used to transform a 2D geometrical object. MbRegTransform registrar is used to
prevent multiple transformations of embedded objects. If an object contains pointers or references to other
objects, then all embedded objects are also transformed. The registrar should be used for serial
transformations of several interrelated objects if relationships between them are due to pointers or references
to shared objects present in them. If the registar is not used during transformation, then multiple
transformations of common embedded objects are possible.

In addition, all geometrical objects have methods that permit to duplicate, check for coincidence, check
whether it's possible to make objects coinciding and to make them coinciding:

MbPlaneltem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbPlaneltem & item ),

bool IsSimilar( const MbPlaneltem & item ),

bool SetEqual( const MbPlaneltem & item ).

MbRegDuplicate registrar is used to prevent multiple copying of embedded objects. If an object contains
pointers or references to other objects, all embedded objects are also copied. The registrar should be used to
copy several interrelated objects in serial manner if the objects have pointers or references to shared objects.
If the registar is not used for copying, then you can get a set of copies of the same embedded object instead
of its single copy.

The following methods are used to identify the type of geometrical object:

MbePlaneType IsA(),

MbePlaneType Type(),

MbePlaneType Family(),

These methods return a type from the enumeration of 2D geometric objects.
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Methods
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties )
ensure that internal data of geometrical objects are accessible and editable. GetProperties method adds
object data to properties set as inheritors of MbProperty class.
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0.3. TWO-DIMENSIONAL CURVES

Two-dimensional curves are used to describe definition area of surface parameters, to construct flat
sketches, to construct 3D curves on surfaces, curves of surface intersections, and projections of 3D curves on
surfaces and planes of local coordinate systems. Many 2D curves are similar to 3D ones, the difference is
that 2D curves use 2D rather than 3D points and vectors. We will use bold and italic Roman letters to
designate vectors, radius vectors of points, and matrices in 2D space.

0.3.1. MbCurve Two-Dimensional Curve

MbCurve abstract class is declared in curve.h file.
MbCurve 2D curve is an inheritor of MbPlaneltem class. Please see Figure O.3.1.1.

[MbReﬂtem] [TapeBaseJ

[MbPlaneItem R | T
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A

[ MbCurve ji

Two-dimensional curve is an abstract class. The following 2D curves are inheritors of MbCurve class

realized in C3D geometric kernel:

MbLine — 2D straight line,

MbLineSegment — 2D straight line segment,

MbArc — 2D elliptical arc,

MbPolyline — 2D polyline,

MbNurbs — 2D B-curve (NonUniform Rational B-Spline),

MbBezier — 2D Bezier composite curve,

MbHermit — 2D Hermite curve,

MbCubicSpline — 2D cubic spline,

MbOffsetCurve — 2D equidistant curve,

MbTrimmedCurve — 2D trimmed curve,

MbReparam — 2D reparameterized curve,

MbCharacterCurve — 2D curve with symbolical coordinate functions,

MbCosinusoid — 2D cosine wave,

MbPointCurve — point curve,

MbProjCurve — projection curve,

MbContour — 2D contour (composite curve)

MbContourWithBreaks — two-dimensional contour with breaks.
MbCurve two-dimensional curve is a vector function

Fig. 0.3.1.1.

curve (t) = [u(t) v(0)]

of ¢ scalar parameter with values belonging to [#min, fmax] Segment. The curve is a continuous projection of
some part of the number axis to 2D space. Two-dimensional space is XY plane of the local 3D coordinate
system and the definition area of surface parameters. Curve parameter variation area is [ fmin, fmax] S€gment in
one-dimensional space. u(), v(¢) coordinates of a point at curve(?) are single-valued continuous functions of ¢
parameter.

fmin and fmax limit values of parameter definition area are received using double GetTMin() and double
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GetTMax() curve methods, respectively.

A curve shall be called periodic if there is p>0 such that for curve(ttkp)=curve(t), where k is an integer.
bool IsClosed() method returns true for a periodic curve. double GetPeriod() method for a periodic curve
(or a curve that can be extended to become periodic) returns p period. Periodic curve parameter definition
area is always limited by one period.

The main method for a curve is:
void PointOn( double & ¢, MbCartPoint & ).

It returns r radius vector of the curve point for specified ¢ parameter. Methods

void FirstDer( double & ¢, MbVector & r;),

void SecondDer( double & ¢, MbVector & r ),

void ThirdDer( double & ¢, MbVector & 4 )

respectively return the first (#), the second (#) and the third (rx) derivatives of the curve radius vector for
specified ¢ parameter. These methods adjust the curve parameter if it goes beyond the definition area (an
exception is a straight line MbLine). If # curve parameter goes beyond [#min, fmax] S€gment, then non-periodic
curves move ¢ parameter to the nearest limit #min OF fmax, and periodic curves add or subtract the required
number of periods.

Method
void _PointOn( double ¢, MbCartPoint & r)
returns r radius vector of the curve point for specified ¢ parameter, both inside and outside the definition area
of ¢ curve parameter. In general case, a non-periodic curve is extended outside of the parameter definition
area by tangent in its end point. Periodic curves, arc (MbArc), cosine wave (MbCosinusoid), character curve
(MbCharacterCurve) and truncated curve (MbTrimmedCurve) within the basic curve are th exceptions.
Periodic curves are extended cyclically outside of the parameter definition area.

Methods

void _FirstDer( double 7, MbVector & r;),

void _SecondDer( double ¢, MbVector & r« ),

void _ThirdDer( double z, MbVector & 74 )

respectively return the first (#,), the second (r,) and the third (r.) derivatives of curve radius vector for
specified # parameter both inside and outside of the curve definition area.

The curves reload such methods for 2D geometrical object as follows:
the methods that serve transformation of a geometrical object,
void Move( const MbVector & v, MbRegTransform * iReg = NULL, ... ),
void Rotate( const MbCartPoint & p, const MbDirection& angle, MbRegTransform * iReg = NULL, ...),
void Transform( const MbMatrix & m, MbRegTransform * iReg = NULL, ... ),
methods that permit to copy, check for coinciding objects, or check whether it's possible to make objects
coinciding and that make them coinciding,

MbPlaneltem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbPlaneltem & item ),

bool IsSimilar( const MbPlaneltem & item ),

bool SetEqual( const MbPlaneltem & item ),

methods that return a type from an enumeration of geometric objects,
MbePlaneType IsA(),

MbePlaneType Type(),

MbePlaneType Family(),

methods that ensure access and editing of internal data of the object,
MbProperty & CreateProperty( MbePrompt name ),

void GetProperties( MbProperties & properties ),

void SetProperties( MbProperties & properties ).

All curves other than MbContour and MbContourWithBreaks usually do not have bends. MbContour and
MbContourWithBreaks are composite curves that may have bends at the points where the segments join.

0.3.2. MbLine Two-Dimensional Straight Line
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MbLine class is declared in cur_line.h file.
MbLine two-dimensional straight line is described by MbCartPoint origin initial point and MbVector
direction directional vector. Please see Figure O.3.2.1.

origin —

=0 direction

Fig. 0.3.2.1.

In PointOn(double & ¢, MbCartPoint & r) method, radius vector of r straight line is described by vector
function

r(¢) = origin + t direction.

Straight line behaves as an infinite object, despite the fact that it has tmin and tmax parameter limits. Note
that unlike all other curves, a straight line does not adjust ¢ parameter when it goes beyond ¢min and tmax
limits in radius vector and its derivatives calculation methods.

0.3.3. MbLineSegment Two-Dimensional Straight Line Segment

MbLineSegment class is declared in cur line segment.h file.
Two-dimensional MbLineSegment straight line segment is described by MbCartPoint point1 initial point
and MbCartPoint point2 end point. Please see Figure 0.3.3.1.

=1

P oin L_’//.-
- poinfl

=0

Fig. 0.3.3.1.
In PointOn( double & ¢, MbCartPoint & r ) method, radius vector of r segment is described by

r(?) = (1 — ¢) point1 + ¢ point2 vector function.

Segment parameter definition area ranges from zero to one. pointl initial point of the segment
corresponds to fmin=0 parameter, point2 end point of the segment corresponds to fmax=1 parameter.

0.3.4. MbArc Two-Dimensional Elliptical Arc

MbArec class is declared in cur_arc.h file.

Two-dimensional elliptical arc is an inheritor of MbCurve curve. MbArc elliptical arc is described by a
and b radii, #rim1 and trim?2 angles and sense direction in MbPlacement position local coordinate system.

triml and trim2 angles are measured along the arc from position.axisX vector towards position.axisY
vector. trim1 and trim2 angles shall be designated as "trimming parameters." Trimming parameters equal to
zero and 2w correspond to a point on pesition.axisX axis. ¢t curve parameter takes values in 0<t<|trim2—
trim1]. The curve may be periodic. |trim2—trim1|=2w holds for a periodic curve. sense parameter takes values
+1 or -1 and indicates arc construction direction. If sense=+1, then trim1<trim2 and the arc is constructed
from trimm1 parameter in angle increase direction. If sense=1, then trim1>trim2 and the arc is constructed
from trimm1 in angle decrease direction.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by
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r(¢) = position.origin +
a cos(trim1+(sense)t) position.axisX + b sin(trim1+(sense)t) position.axisY vector function.

Elliptical arc is shown in Figure O.3.4.1.

L
triml~_ . N\ )
N :

I/ AN

/ ; lr-' . ! \

' , A

\ wim2 ___— origin A
B !
L ', /i /
et | // /
LN i

Fig. 0.3.4.1.

Curve radii should be positive: >0, b>0. The following inequalities should hold for trimming parameters:
trim1<trim2 if sense=1 and trim 1> trim 2 if sense=1.

position local coordinate system may be either left- or right-handed. If local coordinate system is right-
handed and sense=+1, or if local coordinate system is right-handed and sense=1, then the arc is directed
counter-clockwise.

0.3.5. MbPolyline Two-Dimensional Polyline

MbPolyline class is declared in cur_polyline.h file.

Polyline is an inheritor of PolyCurve curve. MbPolyline two-dimensional polyline is described by the
number of segments (segmentsCount), SArray<MbCartPoint>peintList set of control points and closed curve
periodicity sign.

The curve goes through pointList[i], i=0,...,segmentsCount. set of points when ¢=0,...,segmentsCount. 1f
closed=true, then the curve contains a segment that connects the last point of peintList|segmentsCount-1] set
with the initial point of pointList[0] set. ¢ curve parameter takes values in 0<t<segmentsCount.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

r(?) = pointList[i] (1-w) + pointList[i+1] w vector function,

t-t;

where w = , and #<t<t;+1. Polyline is the simplest curve constructed based on a set of points. It

tip1— b
consists of segments that consequently connect control points. The curve may be periodic. segmentsCount is
a period of the periodic curve. Periodic polyline is shown in Figure O.3.5.1.

316



pointList[1]
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ointList[0
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pointList|segmenisCournt-1] pointList[4]
Fig. 0.3.5.1.

Derivatives of the curve at control points (when parameter values are integers) lose the continuity by
length and direction. Derivatives of the curve in control points have special length and direction.

0.3.6. MbNurbs Two-Dimensional NURBS-Curve

MbNurbs class is declared in cur_nurbs.h file.

B-curve or NURBS-curve is an abbreviation of NonUniform Rational B-Spline. The curve is an inheritor
of MbPolyCurve curve. The curve is described by SArray<MbCartPoint>peintList set of two-dimensional
control points, weights set of weights of two-dimensional control points, knots nodal vector, degree spline
order, form curve form parameter and closed curve periodicity sign. There are some other parameters of the
curve that are not mandatory, they are used to speed up curve methods.

The curve is constructed based on B-splines. knots nodal vector is a non-decreasing sequence of real
numbers that defines curve parameter definition area and the form of the curve. In general, form curve form
parameter is equal to ncf Unspecified; and in particular cases it stores data on the original curve that was
used to make a NURBS-copy. degree of a NURBS-curve is equal to the degree of divided differences used to
calculate B-splines. Let node vector have knotsCount elements, and the set of control points contain
pointsCount elements. For non-periodic NURBS-curve, the following equation holds for the number of
elements in the sets: knotsCount=pointsCounttdegree. For periodic NURBS-curve, the following equation
holds for the number of elements in the sets: knotsCount=pointsCount+2degree—1.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

pointsCount—1
Z deegree(t)weight[ j]pointList[ ]
r(t)=—_=2

pointsCount —1

vector function,

N .degree (t ) Weight [J]
=0 J

where N;%’(¢) are B-splains of degree for jth control point from pointList[j] list. NURBS-curve of the fourth
order is shown in Figure 0.3.6.1.
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Fig. 0.3.6.1.
The curve may be periodic. Periodic NURBS-curve is shown in Figure O.3.6.2.
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Fig. 0.3.6.2.

t curve parameter takes values in tmin<t<tmax range, where tmin=knots|degree—1],
tmax=knots[knotsCount—degree].

Form of NURBS-curve depends on location and weight of control points, as well as values of the nodal
vector. In general, NURBS-curve does not go through peintList[i], i=0,...,pointsCount—1 set of points. In
order that non-closed NURBS-curve goes through extreme control points, it is required that the first degree
elements and the last degree elements of knots node vector should coincide. Other things equal, the distance
between the curve and the control point depends on the weight of the control point.

Any curve can construct its NURBS-copy using NurbsCurve( const MbNurbsParameters &
tParameters ) virtual method.

0.3.7. MbHermit Two-Dimensional Hermite Curve

MbHermit class is declared in cur_hermit.h file.

Hermite two-dimensional curve is an inheritor of MbPolyCurve curve. A curve is described by
SArray<MbCartPoint>poeintList set of control points, SArray<MbVector>vectorList set of curve derivatives
in control points, ¢List set of parameter values in curve control points, splinesCount Hermite cubic splines
and closed curve periodicity sign. There are some other parameters of the curve that are not mandatory, they
are used to speed up curve methods.

If tList[i], i=0,1,...,splinesCount, then the Hermite curve goes through pointList[i] control point and has
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vectorList[i] derivative in it. A curve is constructed on the basis of splinesCount smoothly joined 2D third-
order Hermite splines. Each Hermite cubic spline describes a segment of the curve between two neighboring
control points. Each Hermite cubic spline is defined by two extreme points and two derivatives of the curve
in these points.

When a radius vector of the Hermite curve point is calculated, we first use the value of ¢ parameter to find
out the i number of the working segment (Hermite cubic spline number) from ¢List[i]<t<tList[i+1] condition.
The radius vector of the curve is calculated as the radius vector of the found segment for its local parameter
w that is defined by ¢List[i] and tList[i+1].

In PointOn( double & ¢, MbCartPoint & r ) method, r radius vector of the curve is described by vector
function of the found segment for its local parameter w:

r(t)=(1-3w*+2w’)pointList [i ]+(3w*—2w?) pointList[i+1]+
+((w—2w2+w3)VectorList[i]+(—w2+w3)vectorList [i+1])(tL1’st[1’+1 |—tList[i])
t — tList[{]

where w = —— —— and rList[i]<t<tList[i+1].
tList[i + 1] - tList[i]

A Hermite curve is shown in Figure O.3.7.1.

pointList|2]

pointList[1] pointList[splinesCoint|

pointList[()]
pointList[3]
pointList[4]

Fig. 0.3.7.1.

t curve parameter takes values in tmin<t<tmax section, where tmin=tList[0], tmax=tList[splinesCount].
The curve may be periodic.

Curve form depends on location of control points, curve derivatives in control points, and on tList set of
parameter values in control points. If a curve is constructed using only control points, then the values of
curve parameter in tList[i], i=0,1,...,splinesCount control points are directly proportional to distance between
points, and vectorList[i], i=1,2,...,splinesCount—1 derivatives are calculated by constructing a parabola that
goes through three neighboring points (peintList[i—1], pointList[i], pointList[i+1]) in corresponding
parameter values (¢List[i—1], tList[i], tList[i+1]), then parabola derivative is calculated in the middle point.

0.3.8. MbBezier Two-Dimensional Bezier Composite Curve

MbBezier class is declared in cur bezier.h file.

Bezier 2D composite curve is an inheritor of MbPolyCurve curve. A curve is described by
SArray<MbCartPoint>peintList set of control points, splinesCount number of Bezier curves and closed
curve periodicity sign. There are some other parameters of the curve that are not mandatory, they are used to
speed up curve methods.

Curve is constructed on the basis of splinesCount third-order smoothly meeting Bezier curves. Each
Bezier curve is defined by four control points and it goes through only two extreme points. A composite
curve is used to construct a spline that goes through specified points. Specified points are joining points
of third-order Bezier curves. A pair of internal control points for each third-order Bezier curve should be
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defined taking intp account the fact that this curve should smoothly meet with neighboring curves. For a
composite curve, the number of control points is equal to 3(splinesCount+1). For a non-periodic composite
curves, the first pointList[0] control point and the last one are not used.

Every third-order Bezier curve increases composite curve parameter by one. When the radius vector is
calculated, we first use the value of ¢ parameter to find the number of the working segment (number of third-
order Bezier curve) that is equal to the maximum integer not exceeding ¢. Let the number of third-order
Bezier curve be equal to n. Then the fractional part of w=t—n parameter is defined. Radius vector of the
composite curve is calculated as the radius vector of the found segment for its local parameter w.

In PointOn( double & ¢, MbCartPoint & r ) method, r radius vector of the curve is described by vector
function of the found segment for its local parameter w:

pointsCount—1

N deg ree( ) Welght[ ]pOIHtLISt [ ]]
J

— j=0 .
r(t)= pointsCount —1 vector function,
N .degree(t ) Welght []]
=0 J
3!
where w=t—n, n<t<n+1, 0<w<lI, B?(W) G- w/(1-w)® Jare third-order Bernstein functions for Jjith,

j=0,1,2,3, pointList[3n+j] control point of the found segment number #. Bezier composite curve is shown in
Figure O.3.8.1.
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Fig. 0.3.8.1.

t curve parameter takes values in 0<t<splinesCount segment. The curve may be periodic. The period of
the periodic curve is equal to splinesCount.

If the parameter takes integer values, then the curve goes through control points. For example, if /=n, then
the curve goes through pointList[3n], n=0,1,...,splinesCount control point. Derivatives of the curve in joining
points of third-order Bezier curves (at integer parameter values) lose the continuity by length.

0.3.9. MbCubicSpline Two-Dimensional Cubic Spline

MbCubicSpline class is declared in cur _cubic_spline.h file.

Two-dimensional cubic spline is an inheritor of MbPolyCurvecurve. A curve is described by
SArray<MbCartPoint>peintList set of 2D control points, SArray<MbVector>vectorList set of second
derivatives of the curve in control points, zList set of parameter values in curve control points, maximum
index value of splinesCount set of parameters, and closed curve periodicity sign. There are some other
parameters of the curve that are not mandatory, they are used to speed up curve methods.

If tList[i], i=0,1,...,splinesCount, then the cubic spline goes through poeintList[i] control point and has
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vectorList[i] second derivative in it. The curve is constructed so that at transition from peintList[i] point to
pointList[i+1], the second derivative of curve radius vector varies linearly and takes values from
vectorList[i] to vectorList[i+1].

When radius vector of composite curve is calculated, we first use the value of ¢ parameter to find i
number of the working segment from ¢List[i]<t<tList[i+1] condition. Curve radius vector is calculated using
pointList|i], pointList[i+1], vectorList|i], vectorList[i+1] values of the found segment for w local parameter,
that is defined based on tList[i] and tList[i+1].

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

r(t) = (1 - w)pointList[i] + wpointList[i + 1] +

. o (awistli + 1] - tList[i])°
+((-2w+ 3w’ - w3)vectorLlst[L] +(-w+ w3)vectorLlst [i+1]D c
)

vector function,

t — tList[{] _ . ]
where W= ——— ——, and tList[i]<t<tList[i+1]. A cubic spline that was constructed based on the
tList[{ + 1] — tList[{]

same control points as Hermite composite curve is shown in Figure O.3.9.1.
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Fig. 0.3.9.1.

t curve parameter takes values in tmin<t<tmax section, where tmin=tList[0], tmax=tList[splinesCount].
The curve may be periodic.

Curve form depends on the location of control points and zList set of parameter values in control points. If
a curve is constructed using only control points, then the values of curve parameter in tList[i],
i=0,1,...,splinesCount control points are directly proportional to distance between points, and vectorList|i],
i=1,2,...,splinesCount—1 second derivatives are calculated by solving a system of equations.

0.3.10. MbTrimmedCurve Two-Dimensional Truncated Curve

MbTrimmedCurve class is declared in cur_trimmed_curve.h file.

Two-dimensional truncated curve is described by MbCurve* basisCurve base curve, triml initial
truncating parameter of the base curve, #im2 end truncating parameter of the base curve, and the sense sign
of coincidence of directions of the base curve and the truncated curve.

Truncated curve coincides with the base curve within a segment defined by #im1 and trim2 parameters; at
the same time, it can have a direction opposite to that of the segment. If sense=1, then trim1<trim2, then the
directions of truncated curve and the base curve are the same. If sense=1, then trim2<triml then the
direction of the trimmed curve is opposite to that of the base curve.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by
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r(t) = basisCurve(triml+senset).

A truncated curve is shown in Figure O.3.10.1.

twax=|trim2-trinm1 |
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Fig. 0.3.10.1.

t curve parameter takes values in 0<t<sense(trim2—trim1) range.

Theoretically, a truncated curve can be used to change the direction of the curve, but it is recommended to
use Inverse() method.

A truncated curve permits you to change location of the initial point of periodic curve. In this case, the
base curve should be periodic and trim2=trim1+period. In this case, a truncated curve will also be periodic.

A trimmed curve can't use other trimmed curve as a base curve; a base curve of other truncated curve
should be used subject to corresponding recalculation of truncation parameters.

Every curve can construct its truncated copy using Trimmed( double ¢1, double 72, int sense ) virtual
method.

0.3.11. MbReparamCurve Two-Dimensional Reparameterized Curve

MbReparamCurve class is declared in cur_reparam_curve.h file.

Two-dimensional reparameterized curve is described by MbCurve* basisCurve base curve, tmin initial
parameter, tmin end parameter, and dt derivative of the base curve parameter with respect to the parameter of
reparameterized curve.

Reparameterized curve almost completely coincides with the base curve, but it has other parameter
variation area.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

r(t) = basisCurve(v(f)) function,

trim2 - ¢ t—trim1 . .
where v(t) = bmin———+ bmax————, bmin, bmax are the limit values of the base curve
trimZ — trim1 trim2 — trim1

parameter definition area.

t curve parameter takes values in tmin<t<tmax range.

Reparameterized curve almost completely coincides with the base curve, but it has other parameter
definition area. A curve with modified length parameter is used to align parameter variation areas of two
curves. For example, if you want a segment and an arc to have the same parameter variation area, then it is
required to create a reparameterized curve on the basis of another curve from the list using parameter
variation area of the another curve.

A reparameterized curve should't use another reparameterized curve as the base curve; the base curve of
another reparameterized curve should be used.
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0.3.12. MbOffsetCurve Two-Dimensional Equidistant Curve

MbOffsetCurve class is declared in cur_offset curve.h file.

Two-dimensional equidistant curve is described by MbCurve* basisCurve base curve, MbVector distance
offset, dmin modified minimum parameter of base curve, dmax modified maximum parameter of base curve,
tmin minimum parameter of base curve, fmax maximum parameter of base curve, MbMatrix transform
transformation matrix and closed curve periodicity sign. There are some other parameters of the curve that
are not mandatory, they are used to speed up curve methods.

Two-dimensional equidistant curve is a curve having corresponding parameter points are set off at
distance from the corresponding point of basisCurve base curve. Parameter variation area of 2D equidistant
curve differs from parameter variation area of base curve by dmin for the minimum value and by dmax for
the maximum value.

Radius vector of a point of equidistant curve is calculated as follows. Point and normal are calculated for
the specified parameter of the base curve. Then the point is set off by distance along the normal to the curve.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

r(t) = basisCurve(t) + normal(t) -distance vector function,
where normal(f) is the normal to the base curve that was obtained by rotating the tangent of the base curve at

the given point by 90 degrees counterclockwise. Equidistant curve and base curve are shown in Figure
0.3.12.1.

t=tmax+dmax

i=tmin-+dmin

basisCurve

Fig. 0.3.12.1.

¢t curve parameter takes values in tmintdmin<t<tmax+dmax range. If the parameter goes beyond the
definition area, then the radius vector of a point in the base curve is calculated using PointOn( double ¢,
MbCartPoint & r ) method. If distance=0, dmin=0, dmax=0, then the equidistant curve coincides with the
base curve.

An equidistant curve may not use other equidistant curve as the base curve; the base curve of other
equidistant curve should be used subject to corresponding recalculation of the offset.

Every curve can construct an equidistant curve using Offset( double distance ) virtual method.

0.3.13. MbCharacterCurve Two-Dimensional Character Curve

MbCharacterCurve class is declared in cur_character curve.h file.

Character curve is described by xFunction, yFunction coordinate functions, MbPlacement position local
coordinate system, transform transformation matrix, tmin and tmax limit values of curve parameter definition
area, closed curve periodicity sign and coordinateType type of coordinate system (Cartesian, polar), in which
coordinate functions are defined. There are some other parameters of the curve that are not mandatory, they
are used to speed up curve methods.

xFunction(t), yFunction(t) coordinate functions of the character curve are scalar functions of # common
parameter that are defined as character expressions. Lexical analysis was conducted for each character
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expression. In addition, a tree was constructed to calculate values of character expression for specified
parameters, as well as derivatives of character expressions with respect to the parameter. ¢ curve parameter
has values in: tmin<t<tmax range.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

r(t) = [xFunction(t) yFunction(t)] vector function.

A character curve is shown in Figure 0.3.13.1.

axisY

I xFunction(t)=100%cos(7)-50*cos(2*1)
vFunction(t)=100*sin(7)-50*sin(2*¢)

origin

axisX

Fig. 0.3.13.1.

The curve may be periodic. Character expressions in curve definition area should describe continuous and
single-valued functions.

The syntax expression parser recognizes the basic mathematical operations and taking in account priority
and parentheses: addition (+), subtraction (-), multiplication (*), division (/), exponentiation ("), and unary
minus (-). Operations are performed on variables, constants and functions.

The syntax expression parser recognizes the names of the basic mathematical functions, which are given
in Table O.3.13.1.

Table O.3.13.1. Mathematical functions used in symbolic expressions.

Function name Description

sin sine

cos cosine

tan tangent

sind sine, input argument is in degrees

cosd cosine, input argument is in degrees
tand tangent, input argument is in degrees
asin arcsine

acos arccosine

atan arctangent

asind arcsine, input argument is in degrees
acosd arccosine, input argument is in degrees
atand arctangent, input argument is in degrees
sqrt square root
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exp exponent

In natural logarithm

g decimal logarithm

deg function to convert radians to degrees
rad function to convert degrees to radians
abs modulus

Unnamed constants (numbers) can be set as floating point numbers (a string of digits separated by dot) or

in integer format.

Symbolic expressions can use the named constants shown in Table O.3.13.2.

Table O.3.13.2. Named Constants.

Constant name

Description

M_PI m — the ratio of a length of circle to its diameter
M PI 2 /2

M PI 4 /4

M_SQRT2 \2

M E e — exponent

M FI @ — golden ratio

M _RADDEG 180 / & — radians to degrees conversion factor
M _DEGRAD m / 180 — degrees to radians conversion factor

The variable name of an analytic expression can be a sequence of string and numeric literals (the first
character is a literal of string type), that does not match with function and constant names.
Limitations of symbolic curve expression:

* the maximum length of a variable name is 512 characters;

* the maximum length of an expression is 2048 characters;

* the operations of integration, differentiation, calculation of limits of functions are not allowed;

» there is no possibility of simplifying mathematical expressions (for example, reduction of fractions).

Due to the existing limitations, the correct calculation of the value of the analytical expression can be
obtained for relatively simple mathematical expressions and functions. For example, the value of the ratio
sin(x)/x at zero may be calculated incorrectly.

The example code

below demonstrates the ability to create a symbolic 2D curve. The constructed

symbolic curve is shown in Figure 0.3.13.1.

MbCharacterCurve * CreateAnalyticalCurve2D() {

MbCharacterCurve *

curve( nullptr );

// String representations of given coordinate functions.

string_t xFunction
string_t yFunction
string_t argument

= _T( "100*cos(t)-50*cos(2*t)" );
_T( "100*sin(t)-50*sin(2*t)" );
T )

double t1 = 0.0, t2 = 2.0 * M_PI;

// Creating Analytic Coordinate Functions using the Function Factory.

MbFunctionFactory factory;

SPtr<MbFunction> x( factory.CreateAnalyticalFunction(xFunction, argument, t1, t2, true) );
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SPtr<MbFunction> y( factory.CreateAnalyticalFunction(yFunction, argument, t1, t2, true) );
if ( x !'= nullptr && y != nullptr ) {

MbCartPoint point( 0.0, 0.0 ); // Origin of the local coordinate system.

MbVector axisX( 1.0, 0.0 ), axisY( 0.0, 1.0 );

MbPlacement place( point, axisX, axisY ); // Local coordinate system.

MbeLocalSystemType cs = 1ls_CartesSystem; // Type of local coordinate system.

// Create a symbolic 2D curve.

curve = new MbCharacterCurve( *x, *y, cs, place, t1, t2 );

}

return curve;

0.3.14. MbCosinusoid Two-Dimensional Cosine Wave

MbCosinusoid class is declared in cur_cosinusoid.h file.

Two-dimensional cosine wave is described by MbPlacement position local coordinate system, frequency
cyclic frequency, phase initial phase, amplitude amplitude, tmin minimum curve parameter and tmax
maximum curve parameter. There are some other parameters of the curve that are not mandatory, they are
used to speed up curve methods.

Two-dimensional cosine wave is a cosine function, its argument is given along position.axisX vector; the
value of the function is plotted along position.axisY vector. The function has amplitude amplitude, frequency
frequency and phase initial phase.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

r(t) = position.origin +
(((tmin+t—phase) / frequency) position.axisX) + (amplitude cos(tmin+t) position.axisY) vector function.

Cosine wave is shown in figure 0.3.14.1.
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amplitude axisY
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2T
[frequency

Fig. 0.3.14.1.

¢t curve parameter takes values in tmin<t<tmax range. The following inequality should hold for
parameters: rmin<tmax. The curve can't be periodic. Amplitude and frequency of the curve should be greater
than zero: amplitude>0, frequency>0.

position local coordinate system may be either left- or right-handed. A cosine wave is used to describe
intersection of a cylindrical surface and a plane.
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0.3.15. MbPointCurve Two-Dimensional Curve-Point

MbPointCurve class is declared in cur_point_curve.h file.

Two-dimensional curve-point is described by MbCartPoint point, tmin minimum curve parameter, tmax
maximum curve parameter and closed curve periodicity sign.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of » curve is described by

r(t) = point function.

¢t curve parameter takes values in tmin<t<tmax range. The curve may be periodic. The following
inequality should hold for parameters: tmin<tmax.

Two-dimensional curves-points are used in pair with other two-dimensional curve that describes the
intersection of surfaces, one of which has a special point such as a pole. tmin, tmax, closed parameters of the
curve-point coincide with parameters of the two-dimensional curve that is used in pair with the curve-point.

0.3.16. MbProjCurve Two-Dimensional Projection Curve

MbProjCurve class is declared in cur_projection_curve.h file.

Two-dimensional projection curve is described by MbCurve3D* spaceCurve 3D curve, MbSurface*
surface surface and MbCurve* curve 2D curve. There are some other parameters of the curve that are not
mandatory, they are used to speed up curve methods.

Two-dimensional projection curve is a projection of spaceCurve 3D curve to surface, that is
approximately described by curve 2D curve in surface parameter definition area. Parameter definition areas
of spaceCurve and curve curves are the same. curve 2D curve is usually a spline, its control points are
received by projecting points of spaceCurve 3D curve to surface. Parameterization of curve is aligned with
parameterization of the 3D curve in control points. curve 2D curve can be located outside of the surface
parameter definition area.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

r(?) = [u v] vector function,
where u, v are parameters of projection of spaceCurve(?) point to surface. Initial approximation of u# and v
parameters are calculated using the following method: curve—>PointOn(z,point), u=point.x, v=point.y. Then

u and v parameters are improved by iterative method based on the following equations

deriveU - (spaceCurve(f) — surface( u, v)) =0,
deriveV - (spaceCurve(f) — surface( u, v)) =0,

where deriveU and deriveV are partial derivatives of surface radius vector, they are calculated using the

surface—>_DeriveU(u,v,deriveU) and surface—>_DeriveV(u,v,deriveV) methods, respectively. A
projection curve is shown in Figure O.3.16.1.
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spaceCurve

surface

Fig. 0.3.16.1.

A projection curve is used to accurately describe a projection of 3D curve on a surface.

0.3.17. MbContour Two-Dimensional Contour

MbContour class is declared in cur_contour.h file.

MbContour 2D contour is described by RPArray<MbCurve>segments set of sequentially joined curves
and closed curve periodicity sign.

Two-dimensional contour is a composite curve. Unlike other curves, a contour may have kinks. A curve
that creates a contour will be called a segment. The following conditions are met for contour segments:
initial point of each successive segment coincides with the end point of the previous one. For periodic
contour, initial point of the first segment coincides with the end point of the last one. In general, contour
derivatives have discontinuities by length and direction at joining points of segments.

Initial value of contour parameter is zero: fmin=0. Parametric length of a contour is equal to the sum of the

lengths of parametric lengths of its segments: e = 2 Wi = mein), where Wimin and Wimax are minimum and
maximum values of the ith segment parameter. When radius vector of a point of the contour is calculated, we
first use parameter value to determine the working segment and the value of its local parameter, and then we
calculate a radius vector of the working segment, which is a radius vector of the contour.

In PointOn( double & ¢, MbCartPoint & r ) method, the radius vector of r curve is described by

r(f) = segments[k](wx) vector function

where segments[k](wi) is the working segment of the kth contour, wy is the parameter of the working
k-1
segment that is equal to: w, =w,_. +t- Z(wimax_ w; ). The kth segment is defined by the value of ¢
(=0
k-1 k

parameter of the contour according to condition Z(w. —w,_)<t< Z(W. -w, . ), where Wimin and
lmax imin’ — lmax imin
(=0 =0

Wimax are minimum and maximum values of the ith segment parameter. A contour is shown in Figure
0.3.17.1.
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segments[0] segments|2]

segments| 1]

Fig. 0.3.17.1.

A 2D contour can't be used as a segment of other 2D contours. If other contours should be used to
construct a contour, then such initial contours should be considered as a set of curves rather than a single
curve.
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0.4. CURVES

Curves belong to MbSpaceltem family of three-dimensional geometric objects. All curves have the same
parent class MbCurve3D. C3D geometric kernel uses curves that are constructed using analytic functions, by
set of points, based on curves and based on surfaces. Curves are used to construct surfaces and auxiliary
elements in a geometric model. We'll use bold Latin letters to designate vectors, radius vectors of points, and
matrices in three-dimensional space.

0.4.1. MbCurve3D Curve

MbCurve3D class is declared in curve3d.h file.
MbCurve3D curve is an inheritor of MbSpaceltem class, see Figure O.4.1.1.

[MbReﬂtem] [TapeBaseﬂ

[MbSpaceItem - f

—

A

[MbCurveSDj—

The curve is an abstract class. The following curves are inheritors of MbCurve class in C3D geometric

kernel:

MbLine3D — a straight line

MbLineSegment3D — a straight line segment

MbArc3D — an elliptical arc

MbPolyline3D — a polyline

MbNurbs3D — a B-curve (NonUniform Rational B-Spline)

MbBezier3D — a Bezier composite curve

MbHermit3D — a Hermite curve

MbCubicSpline3D — a cubic spline

MbOffsetCurve3D — a equidistant curve

MbTrimmedCurve3D — a trimmed curve

MbReparamCurve3D — a reparametrized curve

MbCharacterCurve3D — a curve with symbolical coordinate functions

MbConeSpiral — a conical spiral

MbCurveSpiral — a spiral with a rectilinear axis and variable radius

MbCrookedSpiral — a spiral with axis in the form of a flat curve

MbBridge — a Hermite spline connecting two curves

MbContour3D — a contour (composite curve)

MbPlaneCurve — a flat curve in 3D space

MbSurfaceCurve — a curve on a surface

MbSilhouetteCurve — a silhouette curve of a surface

MbContourOnSurface — a contour on a surface

MbContourOnPlane — a contour on a plane

MbSurfacelntersectionCurve — an intersectional curve of surfaces.
MbCurve3D is a vector function

Fig. 0.4.1.1.
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curve (1) = [x(t)  y(O) =z(0)]

of ¢ scalar parameter taking values in [fmin, fmax] range. The curve is a continuous projection of a part of
number axis into three-dimensional space. Curve parameter range iS [Zmin, fmax] range in one-dimensional
space. x(?), ¥(f), z(f) coordinates of a point in curve(?) curve are single-valued continuous functions of ¢
parameter.

tmin and fmax limit values of parameter range are received using double GetTMin() and double GetTMax()
curve methods, respectively.

A curve is referred as periodic if there is p>0 such that curve(ttkp)=curve(?) holds, where £ is an integer.
bool IsClosed() method returns true for a periodic curve. double GetPeriod() method returns p period of
periodic curve (or a curve that can be extended and made periodic). Periodic curve parameter range is always
limited to one period.

The main method for the curve is
void PointOn( double & 7, MbCartPoint3D & r ).

It returns r radius vector of curve point for specified ¢ parameter.

void FirstDer( double & ¢, MbVector3D & 1),

void SecondDer( double & ¢, MbVector3D & ry ),

void ThirdDer( double & ¢, MbVector3D & r ) methods

return respectively the first (r;), the second (r;) and the third (r.) derivatives of curve radius vector for
specified parameter (7). These methods adjust curve parameter if it goes beyond the range (except for a
straight line MbLine3D). If curve parameter (¢) goes beyond [fmin, fmax] range, then a non-periodic curve
moves the parameter (¢) to the nearest limit fmin OF fmax, and a periodic curve adds or subtracts required
number of periods.

void _PointOn( double ¢, MbCartPoint3D & r ) method

returns radius vector (r) of curve point for specified parameter (¢) both inside and outside curve parameter
range. In general, a non-periodic curve as extended outside its parameter range along the tangent [to the
curve] in the end point. Periodic curve, an arc (MbArc3D), a spiral (MbSpiral), a character curve
(MbCharacterCurve3D) and a trimmed curve (MbTrimmedCurve3D) within base curve limits are the
exceptions. A periodic curve is extended cyclically beyond the limits of its parameter range.

void _FirstDer( double 7, MbVector3D & r;),

void _SecondDer( double 7, MbVector3D & r4 ),

void _ThirdDer( double #, MbVector3D & r ) methods

respectively return the first (r;), the second (r;) and the third r, derivatives of curve radius vector for
specified ¢ parameter both inside and outside curve range.

The curves reload the following 3D geometrical object methods:
the methods involved in transformation of a geometrical object,
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
the methods that permit to copy, check for coinciding objects, check whether it's possible to make objects
coinciding and make them coinciding:

MbSpaceltem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceltem & item ),

bool IsSimilar( const MbSpaceltem & item ),

bool SetEqual( const MbSpaceltem & item ),

the methods that return a type from enumeration of geometric objects,
MbeSpaceType IsA(),

MbeSpaceType Type(),

MbeSpaceType Family(),

the methods that ensure access and editing of object internal data,
MbProperty & CreateProperty( MbePrompt name ),

void GetProperties( MbProperties & properties ),

void SetProperties( MbProperties & properties ),

the method that fills up a polygonal copy of a geometrical object,
CalculateWire( double sag, MbMesh & mesh ).
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All curves besides MbContour3D, MbContourOnSurface, MbContourOnPlane usually don't have bends.
MbContour3D, MbContourOnSurface, MbContourOnPlane are composite curves that may have bends in the
points where their constituting segments join.

0.4.2. MbLine3D Straight Line

MbLinet3D class is declared in cur_line 3d.h file.
MbLine3D straight line is described by MbCartPoint3D origin initial point and MbVector3D direction
directional vector, see Figure 0.4.2.1.

origin __-—-——""-f_d
...-—""'

_‘_‘_,/-;:0 direction

Fig. 0.4.2.1.
In PointOn(double & ¢, MbCartPoint3D & r) method, radius vector of r straight line is described by

r(¢) = origin + ¢ direction vector function.
The straight line behaves as an infinite object, but it has tmin and tmax parameter limits. Note that unlike

all other curves, a straight line doesn't adjust ¢ parameter when it goes beyond tmin and tmax limits when
radius vector and its derivatives are calculated using corresponding methods.

0.4.3. MbLineSegment3D Straight Line Segment

MbLineSegment3D class is declared in cur_line segment 3d.h file.
MbLineSegment3D straight line segment is described by MbCartPoint3D peintl initial point and
MbCartPoint3D point2 end point, see Figure 0.4.3.1.

=1

Pl}ill‘t-l-'____,.’—-‘_._
- point2

=0
Fig. 0.4.3.1.
In PointOn( double & ¢, MbCartPoint3D & r ) method, radius vector of r segment is described by
r(f) = (1 — ¢) pointl + ¢ point2 vector function.
Segment parameter definition area ranges from zero to one. pointl segment initial point corresponds to

tmin=0 parameter, and point2 segment end point corresponds to fmax=1 parameter.

0.4.4. MbArc3D Elliptical Arc

MbArc3D class is declared in cur_arc_3d.h file.
An elliptical arc is an inheritor of MbCurve3D curve. MbArc3D elliptical arc is described by a and b
radii, as well as trim1 and trim2 angles defined in MbPlacement3D position local coordinate system.
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triml and frim2 angles are measured along the arc from position.axisX vector towards position.axisY
vector. trim1 and trim2 angles shall be designated as "trimming parameters". Trimming parameters equal to
zero and 27w correspond to a point on position.axisX axis. ¢ curve parameter takes values in 0<t<trim2—trim1
range. The curve may be periodic. trim2—trim1=2n holds for a periodic curve.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(¢) = position.origin +
a cos(trim1+¢) position.axisX + b sin(#7im1+¢) position.axisY vector function.
An elliptical arc is shown in Figure 0.4.4.1.

*7 axisZ
h triml

axisY

axisX
origin

Fig. 0.4.4.1.

Curve radii should be greater than zero: a>0, b>0. The following inequalities should hold for trimming
parameters: trim1<trim?2.
position local coordinate system may be either right- or left-handed.

0.4.5. MbPolyline3D Polyline

MbPolyline3D class is declared in cur_polyline3d.h file.

A polyline is an inheritor of MbPolyCurve3D curve. MbPolyline3D polyline is described by
segmentsCount number of segments, SArray<MbCartPoint3D>pointList set of control points and closed
curve periodicity sign.

The curve goes through pointList[i], i=0,....segmentsCount. set of points at #=0,...,segmentsCount
parameter values. If closed=true, then the curve contains a segment connecting the last point of
pointList[segmentsCount-1] set with the initial point of pointList[0] set. # curve parameter takes values in
0<t<segmentsCount range.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(f) = pointList[i] (1-w) + pointList[i+1] w vector function,

t-t;
2
where W = — and #,<¢<t;+1. A polyline is the simplest curve constructed based on a set of points. It
i+17 Y
consists of segments that consequently connect the control points. A polyline is shown in Figure 0.4.5.1.
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pointList[0] pointList[4]
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pointList [segmentsCount|
pointList[2]

Fig. 0.4.5.1.

The curve may be periodic. segmentsCount is a period of periodic curve. Derivatives of the curve in
control points (when parameter values are integers) lose continuity by length and direction. A derivative of
the curve in a control point has special length and direction. A polyline has a number of useful features:
minimum amount of computation is required to work with it; projection of polyline will also be a polyline.

0.4.6. MbNurbs3D NURBS-Curve

MbNurbs3D class is declared in cur_nurbs3d.h file.

NURBS-curve is an acronym of NonUniform Rational B-Spline. The curve is an inheritor of
MbPolyCurve3D. The curve is described by SArray<MbCartPoint3D>pointList set of control points,
weights set of control point weights, knots node vector, degree spline order, form curve parameter and closed
curve periodicity sign. There are some other parameters of the curve that are not mandatory, they are used to
speed up curve methods.

The curve is constructed based on B-splines. knots node vector is a non-decreasing sequence of real
numbers that defines curve parameter range and curve shape. In general, form curve shape parameter is equal
to ncf Unspecified; in particular cases, it stores original curve data that were used to construct a NURBS-
copy. degree order of NURBS-curve is equal to the order of divided differences used to calculate B-splines.
Let node vector have knotsCount elements, and let the set of control points contain pointsCount elements.
For non-periodic NURBS-curve, the following equation holds for the number of elements in sets:
knotsCount=pointsCount+degree. For periodic NURBS-curve, the following equation holds for the number
of elements in sets: knotsCount=points Count+2degree—1.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

pointsCount — 1

Z N}_degee(t)weight[i]pointList[f]

j=0

r(t) =

pointsCount — 1

Z decgrcc(t) W'eight []]

j=0

vector function, where N%€*(f) is degree order B-splines for the jth control point from pointList[;].
NURBS-curve is shown in Figure 0.4.6.1.
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Fig. 0.4.6.1.

t curve parameter takes values in tmin<t<tmax range, where tmin=knots|degree—1],
tmax=knots[knotsCount—degree]. The curve may be periodic. A periodic NURBS-curve is shown in Figure
0.4.6.2.

pointList[0]

pointList[2] pointList[3]

pointList[4]
pointList[1]

pointList[7]
pointList[5]

pointList [6]

Fig. 0.4.6.2.

The shape of NURBS-curve depends on location and weight of control points, as well as node vector
values. In general, NURBS-curve does not go through poeintList[i], i=0,...,pointsCount—1 set of points. For
non-closed NURBS-curve to go through extreme control points it is required that the first degree elements
and the last degree elements of knots node vector coincide. Other things equal, the distance between the
curve and the control point depends on the weight of the control point.

NURBS-curve can be constructed by any curve using NurbsCurve( const MbNurbsParameters &
tParameters ) virtual method.

0.4.7. MbHermit3D Hermite Curve

MbHermit3D class is declared in cur_hermit3d.h file.

Hermite curve is an inheritor of MbPolyCurve3D. The curve is described by
SArray<MbCartPoint3D>pointList set of control points, SArray<MbVector3D>vectorList set of curve
derivatives in control points, tList set of parameter values in curve control points, splinesCount Hermite
cubic splines and closed curve periodicity sign. There are some other parameters of the curve that are not
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mandatory, they are used to speed up curve methods.

At tList[i], i=0,1,...,splinesCount value, a Hermite curve goes through pointList[:] control point and it has
vectorList[7] derivative in it. The curve is constructed on the basis of splinesCount smoothly adjoined third-
order Hermite splines. Each Hermite cubic spline describes a section of the curve between two neighboring
control points. Each Hermite cubic spline is defined by two extreme points and two derivatives of the curve
in these points.

When radius vector of Hermite curve point is calculated, we first use the value of ¢ parameter to find i,
working segment number (Hermite cubic spline number ) from zLis#[7]<t<tList[i+1]. Curve radius vector is
calculated as a radius vector of the found segment for its local parameter (w) that is defined from ¢List[i]
and tList[i+1].

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by a vector
function of the found segment for its local parameter w

r(t)=(1-3w*+2w’)pointList[i ]+(3w’—2w’ ) pointList[ i+1 ]+
+ ((w —2w” +w’ )vectorList{i]+ (—w” +w’ )vectorLis{i + I]IrLfsr[f +1]—tList[7]),

t — tList[i] o o
where w=——— ——, and tList[{]<t<tList[i+1].
tList[i + 1] - tList[{]

A Hermite curve is shown in Figure 0.4.7.1.

pointList[1]
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5, pointList[4]

pointList[splinesCount|

pointList [0]

pointList[5]

Fig. 0.4.7.1.

t curve parameter takes values in tmin<t<tmax range, where tmin=tList[0], tmax=tList[splinesCount]. The
curve may be periodic.

Curve shape depends on location of control points, derivatives of the curve in control points, as well as on
tList set of parameter values in control points. If a curve is constructed using control points, only then values
of curve parameter in tList[i], i=0,1,...,splinesCount control points are directly proportional to distance
between the points, and vectorList[i], i=1,2,...,splinesCount—1 derivatives are calculated by constructing a
parabola through three neighboring points (pointList[i—1], pointList[i], pointList[i+1]) taking into account
corresponding values of parameter (¢List[i—1], tList[i], tList[i+1]), and parabola derivative is calculated in the
midpoint.

0.4.8. MbBezier3D Bezier Composite Curve

MbBezier3D class is declared in cur_bezier3d.h file.

Bezier two-dimensional composite curve is an inheritor of MbPolyCurve3D. A curve is described by
SArray<MbCartPoint3D>pointList set of control points, splinesCount number of Bezier curves and closed
curve periodicity sign. There are some other parameters of the curve that are not mandatory, they are used to
speed up curve methods.

The curve is constructed on the basis of splinesCount smoothly adjoined third-order Bezier curves. Each
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Bezier curve is defined by four control points and it goes through two extreme points only. A composite
curve is used to construct a spline that goes through specified points. Specified points are used as joining
points of third-order Bezier curves. A pair of internal control points for each third-order Bezier curve should
be defined taking into account that the curve should to be smoothly adjoined to neighbor curves. For a
composite curve the number of control points is equal to 3(splinesCount+1). For non-periodic composite
curve, the first control point pointList[0] and the last control point are not used.

Every third-order Bezier curve increases composite curve parameter by one. When radius vector is
calculated, we first use the value of ¢ parameter to find working segment number (the number of third-order
Bezier curve) that is equal to the maximum integer not exceeding ¢. Let the number of third-order Bezier
curve be equal to n. Then a fractional part of w=t—n parameter is defined. Radius vector of composite curve
is calculated as a radius vector of the found segment for its local parameter (w).

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by a vector
function of the found segment for its local parameter w

3

3 :
=Y —— w1 -w)? pointList[3 1°
20 }Zoj!(g_j)! (1-w)*pointList[3n +]

3! ; ; . . .
where w=t-n, n<t<n+1, 0<w<l, B?(w) = mw’ (1-w)® Jare third-order Bernstein functions for the jth,
] =)

j=0,1,2,3, pointList[3n+j] control point of found section number n. A Bezier composite curve is shown in
Figure 0.4.8.1.
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pointList[2]
‘pointList[7]
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pointList[0]
pointList[3splinesCounr+1]

pointList[3splinesCouni+2)

Fig. 0.4.8.1.

t curve parameter takes values in 0<t<splinesCount range. The curve may be periodic. splinesCount is a
period of periodic curve.

If the parameter takes integer values, then the curve goes through control points. For example, if /=n, then
the curve goes through peintList[3n], #n=0,1.....splinesCount control point. Derivatives of the curve in
joining points of third-order Bezier curves (when parameter values are integers) lose continuity by length.

0.4.9. MbCubicSpline3D Cubic Spline

MbCubicSpline3D class is declared in cur_cubic_spline3d.h file.

Cubic spline is an inheritor of MbPolyCurve3D. The curve is described by
SArray<MbCartPoint3D>pointList set of control points, SArray<MbVector3D>vectorList set of second
derivatives of the curve in control points, tList set of parameter values in curve control points, maximum
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index value of splinesCount set of parameters, and closed curve periodicity sign. There are some other
parameters of the curve that are not mandatory, they are used to speed up curve methods.

At tList[i], i=0,1,...,splinesCount parameter values, a cubic spline goes through peintList[i] control point
and has vectorList[i] second derivative in it. The curve is constructed so that at transition from pointList[7]
point to pointList[i+1] point the second derivative of curve radius vector changes linearly from vectorList[:]
to vectorList[i+1].

When radius vector of composite curve is calculated, we first use ¢ parameter value to find the i working
segment number from ¢List[i|<t<tList[i+1]. Curve radius vector is calculated using pointList[:],
pointList[i+1], vectorList[i], vectorList[i+1] values of the found segment for its local parameter w, that is
defined from tList[i] and tList[i+1].

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = (1 - w)pointList[i] + wpointList[i + 1] +
(tList[i + 1] - tList[i])?

+((-2w+ 3w? - w3)vectorList[i] +(-w+ wg)vectorList [i+1]D .
)

t - tList[{]
tList[i + 1] - tList[i]’
by the same control points as composite Hermite curve is shown in Figure 0.4.9.1.

vector function, where w = and tList[i]<t<tList[i+1]. A cubic spline that was constructed

pointList[1]

pointList[2]
pointList[3]

pointList[4]
pointList [0]
pointList[splinesCount]

pointList[5]

Fig. 0.4.9.1.

t curve parameter takes values in tmin<t<tmax range, where tmin=tList|0], tmax=tList[splinesCount]. The
curve may be periodic.

Curve shape depends on location of control points and tList set of parameter values in control points. If a
curve is constructed by control points only, then the values of curve parameter in  tList[i],
i=0,1,...,splinesCount control points are directly proportional to distance between the points, and
vectorList[{], i=1,2,...,splinesCount—1 second derivatives are calculated by solving a system of equations.

0.4.10. MbTrimmedCurve3D Trimmed Curve

MbTrimmedCurve3D class is declared in cur_trimmed curve3d.h file.

A trimmed curve is described by MbCurve3D * basisCurve base curve, #im1 initial trimming parameter
of the base curve, #7im2 end trimming parameter of the base curve, and sense direction coincidence sign of
the base curve and the trimmed curve.

The trimmed curve coincides with the base curve within a section defined by #im1 and #trim2 parameters,
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but it can have an opposite direction. If sense=1, then trim1<trim2, and the directions of the trimmed curve
and the base curves coinside. If sense=1, then trim2<trim1, and direction of the trimmed curve is opposite
to that of the base curve.
In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by
r(?) = basisCurve(triml+senset) vector function.

A trimmed curve is shown in Figure 0.4.10.1.

wax=|trim2-triml| #~
trim?2 sense =-1

basisCurve

frim] & fy=0

Fig. 0.4.10.1.

t curve parameter takes values in 0<t<sense(trim2—trim1) range.

Conceptually, a trimmed curve can be used to change the direction of the curve, but it is recommended to
use Inverse() method.

A trimmed curve permits you to change location of the initial point of periodic curve. In this case, the
base curve should be periodic and trim2=trim1+period should hold. In this case, a trimmed curve will also be
periodic.

A trimmed curve can't use other trimmed curve as a base curve; base curve of other trimmed curve should
be used subject to corresponding recalculation of trimming parameters.

Each curve can construct its trimmed copy using Trimmed( double ¢1, double 72, int sense ) virtual
method.

0.4.11. MbReparamCurve3D Reparametrized Curve

MbReparamCurve3D class is declared in cur_reparam_curve3d.h file.

A reparametrized curve is described by MbCurve3D * basisCurve base curve, fmin initial parameter,
tmin end parameter, and df derivative of base curve parameter to reparametrized curve parameter.

Reparametrized curve almost completely coincides with the base curve, but it has other parameter range.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(¢) = basisCurve(v(¢)) vector function,

trim2 — ¢ t-triml . -
where v(t) = bmin— ——  + bmax—————_, bmin, bmax are the limiting values of base curve

trim2 — trim1 trim2 - trim1
parameter range.

t curve parameter takes values in tmin<t<tmax range.

Reparametrized curve almost completely coincides with the base curve, but it has other parameter
definition range. A curve with modified parameter length is used to align parameter variation ranges of the
two curves. For example, if you want a segment and an arc to have the same parameter range, then it is
required to create a reparametrized curve with parameter range taken from the other curve.

A reparametrized curve can't use other reparametrized curve as a base curve; rather the base curve of
other reparametrized curve should be used.
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0.4.12. MbOffsetCurve3D Equidistant Curve

MbOffsetCurve3D class is declared in cur_offset curve3d.h file.

Equidistant curve is described by MbCurve3D* basisCurve base curve and MbVector3D offset offset
vector. There are some other parameters of the curve that are not mandatory, they are used to speed up curve
methods.

basisCurve base curve is MbSpine object that constructs a local coordinate system moving along a
specified curve, the first coordinate axis of its coordinate system is tangential to the curve. offset vector
determines movement of the initial point of the base curve to the initial point of equidistant curve. offset
vector is orthogonal to the tangent vector of the base curve in the initial point. In a moving local coordinate
system, movement of any point of the base curve to the corresponding point of the equidistant curve is equal
to the offset vector and orthogonal to the tangent vector of the base curve in the current point.

Radius vector of a point at equidistant curve is calculated as follows. The following elements are
calculated for the specified parameter of base curve: the point on the guiding curve and local coordinate
system with origin in this point and the first coordinate axis tangential to the curve in this point. Then, a
matrix is calculated for rotating the local coordinate system when it is moved from the initial point of the
base curve to the specified point. The rotation matrix is used to transform a copy of the offset vector; the
calculated point of the base curve is moved using the calculated vector.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(?) = basisCurve(?) + offset -A(7) vector function,
where A(?) is a rotation matrix for rotating the local coordinate system when it is moved from the initial point

of the base curve to the specified point. Curve equidistant to a conical spiral is shown in Figure 0.4.12.1.

basisCurve

offset f

Fig. 0.4.12.1.

Equidistant curve parameter range coincides with that of the base curve.
An equidistant curve can't use other equidistant curve as a base curve; guiding curve of other equidistant
curve should be used subject to corresponding recalculation of the offset vector.

0.4.13. MbCharacterCurve3D Character Curve

MbCharacterCurve3D class is declared in cur_character curve3d.h file.

Character curve is described by xFunction, yFunction, zFunction coordinate functions, MbPlacement3D
position local coordinate system, transform transformation matrix, tmin and tmax limit values of curve
parameter range, closed curve periodicity sign and coordinateType coordinate system type (Cartesian,
cylindrical, spherical), where coordinate functions are defined. There are some other parameters of the curve
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that are not mandatory, they are used to speed up curve methods.

xFunction(t), yFunction(t), zFunction(t) coordinate functions of character curve are scalar functions of ¢
common parameter, they are defined as character expressions. Lexical analysis was made for each character
expression and a tree was constructed that calculates the value of character expression for a specified
parameter, as well as derivatives of the character expression to the parameter. ¢ curve parameter takes values
in tmin<t<tmax range.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(f) = [xFunction(t) yFunction(t) zFunction(f)] vector function.

A character curve is shown in Figure 0.4.13.1.

xFunction(t)=100*cos(1)-20*cos(4*f)
yvEFunction(£)=100%sin(r)-20%sin(4*r)

zFunction(t)=t*10

origin

Fig. 0.4.13.1.

The curve may be periodic. Character expressions should describe continuous finite single-valued
functions in curve definition range.

The syntax expression parser recognizes the basic mathematical operations and taking in account priority
and parentheses: addition (+), subtraction (-), multiplication (*), division (/), exponentiation ("), and unary
minus (-). Operations are performed on variables, constants and functions.

The syntax expression parser recognizes the names of the basic mathematical functions, which are given
in Table 0.4.13.1.

Table O.4.13.1. Mathematical functions used in symbolic expressions.

Function name Description

sin sine

oS cosine

tan tangent

sind sine, input argument is in degrees
cosd cosine, input argument is in degrees
tand tangent, input argument is in degrees
asin arcsine

acos arccosine

atan arctangent

asind arcsine, input argument is in degrees
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acosd arccosine, input argument is in degrees
atand arctangent, input argument is in degrees
sqrt square root

exp exponent

In natural logarithm

Ig decimal logarithm

deg function to convert radians to degrees
rad function to convert degrees to radians
abs modulus

Unnamed constants (numbers) can be set as floating point numbers (a string of digits separated by dot) or
in integer format.
Symbolic expressions can use the named constants shown in Table O.4.13.2.

Table O.4.13.2. Named Constants.

Constant name Description

M PI = — the ratio of a length of circle to its diameter
M PI 2 /2

M PI 4 n/4

M_SQRT2 \2

M E e — exponent

M FI @ — golden ratio

M _RADDEG 180/ — radians to degrees conversion factor
M_DEGRAD m / 180 — degrees to radians conversion factor

The variable name of an analytic expression can be a sequence of string and numeric literals (the first
character is a literal of string type), that does not match with function and constant names.

Limitations of symbolic curve expression:

* the maximum length of a variable name is 512 characters;
*  the maximum length of an expression is 2048 characters;
* the operations of integration, differentiation, calculation of limits of functions are not allowed;

» there is no possibility of simplifying mathematical expressions (for example, reduction of fractions).

Due to the existing limitations, the correct calculation of the value of the analytical expression can be
obtained for relatively simple mathematical expressions and functions. For example, the value of the ratio
sin(x)/x at zero may be calculated incorrectly.

The example code below demonstrates the ability to create a symbolic 3D curve. The constructed
symbolic curve is shown in Figure O.4.13.1.

MbCharacterCurve3D * CreateAnalyticalCurve3D() {
MbCharacterCurve3D * curve( nullptr );
// String representations of given coordinate functions.
string_t xFunction = _T( "1@0*cos(t)-20*cos(4*t)" );

342



string_t yFunction = _T( "100*sin(t)-20*sin(4*t)" );
string_t zFunction = _T( "t*10" );
string_t argument _TC "t )
double t1 = 0.0, t2 = 5.0 * M_PI;
// Creating Analytic Coordinate Functions using the Function Factory.
MbFunctionFactory factory;
SPtr<MbFunction> x( factory.CreateAnalyticalFunction(xFunction, argument, t1, t2, true) );
SPtr<MbFunction> y( factory.CreateAnalyticalFunction(yFunction, argument, t1, t2, true) );
SPtr<MbFunction> z( factory.CreateAnalyticalFunction(zFunction, argument, t1, t2, true) );
if ( x !'= nullptr & y != nullptr & z != nullptr ) {
MbCartPoint3D point( 0.0, 0.0, 0.0 ); // Origin of the local coordinate system.
MbVector3D axisX( 1.0, 0.0, 0.0 ), axisY( 0.0, 1.9, 0.0 );
MbPlacement3D place( point, axisX, axisY ); // Local coordinate system.
MbeLocalSystemType3D cs = 1s_CartesianSystem; // Type of local coordinate system.
// Create a symbolic 3D curve.
curve = new MbCharacterCurve3D( *x, *y, *z, cs, place, t1, t2 );

}

return curve;

0.4.14. MbConeSpiral Conical Spiral

MbConeSpiral class is declared in cur_cone_spiral.h file.

A conical spiral is an inheritor of MbSpiral curve. The spiral is described by MbPlacement3D position
local coordinate system, radius, tgAlpha cone angle tangent, step 2pi spiral pitch divided by 2=, tmin and
tmax spiral limits. There are some other parameters of the curve that are not mandatory, they are used to
speed up curve methods.

Spiral axis coincides with pesition.axisZ axis of the local coordinate system. tgA/pha parameter is equal
to tangent of the angle between spiral axis and spiral cone generator. tmin and tmax parameters are angles,
they are measured from position.axisX vector towards position.axisY vector. The angles that are 2n
multiples correspond to curve point in XZ plane of the local coordinate system. ¢ curve parameter takes
values in tmin<t<tmax range.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(f) = position.origin +
(radius + t tgAlpha step 2pi) (cos(?) position.axisX + sin(¢) position.axisY) +
((¢ step_2pi) position.axisZ) vector function.

A conical spiral is shown in Figure O.4.14.1.
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Fig. 0.4.14.1.

Curve radius should be greater than zero: radius>0. The following inequalities should hold for limiting
parameters: tmin<tmax. The curve can't be periodic.
position local coordinate system may be either right- or left-handed. tg4/pha=0 for a cylindrical spiral.

0.4.15. MbCurveSpiral Variable Radius Spiral

MbCurveSpiral class is declared in cur_curve_spiral.h file.

Variable radius spiral is an inheritor of MbSpiral curve. A spiral is described by MbPlacement3D position
local coordinate system, curve 2D curve that defines radius variation law, step spiral pitch, tmin and tmax
spiral limits. There are some other parameters of the curve that are not mandatory, they are used to speed up
curve methods.

Spiral axis coincides with position.axisZ axis of the local coordinate system. curve 2D curve lies in XZ
plane of the local coordinate system, this curve defines spiral radius variation law. pesition.axisZ is abscissa
axis, and position.axisX is ordinate axis in curve two-dimensional space. The origin of curve 2D coordinate
system coincides with the origin of pesition local coordinate system. Spiral radius is equal to the ordinate of
points in curve two-dimensional curve. tmin and tmax parameters are angles, they are measured from
position.axisX vector towards position.axisY vector. The angles that are 2z multiples correspond to curve
point in XZ plane of the local coordinate system.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(f) = position.origin +
radius(f) (cos(?) position.axisX + sin(¢) position.axisY) +
((¢ -step / 27) position.axisZ) vector function,

where radius(t) is local radius. radius(f) local radius is calculated as follows. We use defined ¢ parameter to
calculate tstep/2rm abscissa of required 2D curve point. Then we define the point of intersection of curve and
vertical straight line; this line intersects with abscissa axis in ¢step/2x point. The ordinate of two-dimensional
intersection point of curve and the vertical straight line is equal to the required spiral radius(f). Local radius
is the distance between local abscissa axis and the point of intersection of the vertical straight line and curve
in two-dimensional space in XZ plane in position local coordinate system. Variable radius spiral is shown in
Figure 0.4.15.1.
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curve

Fig. 0.4.15.1.

curve should be located above the abscissa axis and it shouldn't cross abscissa axis of its two-dimensional
coordinate system. curve shouldn't have vertical tangent lines. The following inequalities should hold for
limiting parameters: tmin<tmax. The curve can't be periodic.

position local coordinate system may be either right- or left-handed.

0.4.16. MbCrookedSpiral Spiral with Curved Planar Axis

MbCrookedSpiral class is declared in cur_crooked_spiral.h file.

Spiral with a curvilinear planar axis is an inheritor of MbSpiral curve. A spiral is described by
MbPlacement3D position local coordinate system, MbCurve* curve two-dimensional curve that defines
spiral axis, radius spiral radius, step spiral pitch, and two spiral limits (¢min and tmax). There are some other
parameters of the curve that are not mandatory, they are used to speed up curve methods.

curve two-dimensional curve lies in XZ plane of pesition local coordinate system, it defines the spiral
axis. position.axisZ is abscissa axis, and position.axisX is ordinate axis in curve two-dimensional space.
The origin of curve 2D coordinate system coincides with the origin of position local coordinate system.
Spiral radius is constant. fmin and tmax parameters are angles, they are measured from position.axisX vector
towards position.axisY vector. The angles that are 2 multiples correspond to curve point in XZ plane of the
local coordinate system.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(f) = position.origin +
((point.y + radius cos(t) normal.y) position.axisX) +
(radius sin(f) position.axisY) +
((point.x + radius cos(t) normal.x) position.axisZ) vector function,

where point is a point in 2D curve that is calculated using curve—>PointOn(z,point) method and normal is a

normal to 2D curve that is calculated using curve—>Normal(¢,normal) method. Variable radius spiral is
shown in Figure 0.4.16.1.
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Fig. 0.4.16.1.

The minimum curvature radius curve shouldn't be less than spiral radius. The following inequalities
should hold for limiting parameters: tmin<tmax. The curve can't be periodic.
position local coordinate system may be either right- or left-handed.

0.4.17. MbBridgeCurve3D Joining Curve

MbBridgeCurve3D class is declared in cur_bridge3d.h file.

Joining curve is an inheritor of MbCurve3D curve. The curve is described by two curves (MbCurve3D*
curvel and MbCurve3D* curve2), paraml and param?2 point parameters of these curves, sensel and sense2
direction coincidence signs for derivatives of the joining curve and the curves to be joined, and two joining
curve limits (tmin and tmax). There are some other parameters of the curve that are not mandatory, they are
used to speed up curve methods.

A joining curve is used to smoothly join two specified points of curvel and curve2. curvel and curve2
curve points are defined by paraml and param?2 parameters. sensel and sense2 parameters define joining
curve direction in these points. A joining curve is a cubic Hermite spline constructed based on two extreme
points and curve derivatives in these points. ¢ curve parameter takes values in tmin<t<tmax range.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(t) = (1-3w" + 2W3)point1 + (3w? + 2W3)point2 +
+ ((w - 2w* + w)derivel + (- w* + w”)derive2) (tmax — tmin)

. t—1tmin . . . . . .
vector function, where w=__ "~ is a relative parameter value, pointl is a point of curvel that is

tmax — tmin
calculated using curvel—>PointOn(param1,pointl) method, point2 is a point of curve2 that is calculated
using curve2—>PointOn(param?2,point2) method, derivel and derive2 are joining curve derivatives in
extreme points. derivel and derive2 vectors are parallel to the derivatives of the curves being joined. The
length of derivel and derive2 vectors is equal to distance between two extreme points divided by tmax—
tmin. A joining curve is shown in Figure 0.4.17.1.
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Fig. 0.4.17.1.

Curve shape depends on location of extreme points and directions of curves being joined in these points.
The following inequalities should hold for limiting parameters: tmin<tmax. The curve can't be periodic.

0.4.18. MbContour3D Contour

MbContour3D class is declared in cur_contour3d.h file.

MbContour3D contour is described by RPArray<MbCurve3D>segments set of sequentially joined curves
and closed curve periodicity sign.

A contour is a composite curve. Unlike other curves, a contour may have bends. We'll call segments the
curves that form a contour. The following conditions keep for contour segments: the initial point of each
successive segment coincides with the end point of the previous one. For a periodic contour, the initial point
of the first segment coincides with the end point of the last one. In general, contour derivatives have
discontinuities by length and direction in the points where the segments join.

The initial value of contour parameter is zero: fmin=0. Contour parametric length is equal to the sum of the
lengths of parametric components of its segments: t . = Z(Wt’maxi Wimin)’ where Wimin and Wimax are

minimum and maximum values of the ith segment parameter. When radius vector of contour point is
calculated, we first use parameter value to determine the working segments and the value of its local
parameter, and then we calculate radius vector of the working segment, which is used as contour radius
vector.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(¢) = segments[k](wy), vector function,
where segments[k](wx) is contour working segment with index value k, wy is working segment parameter

k-1
that is equal to: W, =w; .+t - Z Winax =™ Wimin)-

i=0
The kth segment is defined by the value of ¢ contour parameter from condition
1 k

k -

) -W, . )< : -Ww. . o ; ini i
Z Winax ™ Wimin) < £ < Z (Wi = Wi o), Where Wimin and Wimax are minimum and maximum values
i=0 i=0

of the ith segment parameter. A contour is shown in Figure 0.4.18.1.
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Fig. 0.4.18.1.

segments| 1 |

Other contours shouldn't be used as contour segments. If other contours should be used to construct a
contour, then such initial contours should be considered as a set of curves rather than as a single curve.
MbContour3D contour is the most common curve type.

0.4.19. MbPlaneCurve Plane Curve

MbPlaneCurve class is declared in cur plane curve.h file.

MbPlaneCurve plane curve is described by MbPlacement3D position local coordinate system and
MbCurve* curve two-dimensional curve in XY plane of the local coordinate system.

A polar curve is a projection of the curve from 2D space of XY plane of local coordinate system into 3D
space.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(¢) = position.origin + (point.x position.axisX) + (point.y position.axisY) vector function,

where point is a point of 2D curve that is calculated using curve—>PointOn(z,point) method. A plane curve
that is part of a two-dimensional ellipse and a local coordinate system is shown in Figure 0.4.19.1.

position

Fig. 0.4.19.1.
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Parameter range and plane curve periodicity coincide with those of two-dimensional curve.

0.4.20. MbSurfaceCurve Curve on Surface

MbSurfaceCurve class is declared in cur_surface curve.h file.

MbSurfaceCurve curve on surface is described by MbSurface* surface surface, MbCurve* curve two-
dimensional curve in surface parameter space, and closed curve periodicity sign. There are some other
parameters of the curve that are not mandatory, they are used to speed up curve methods.

Curve on surface is a projection of 2D curve in surface parameter space into 3D space. curve two-
dimensional curve can be located outside of surface parameter definition area. Parameter definition area of
the curve on the surface coincides with that of curve two-dimensional curve.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(¢) = surface( point.x, point.y ) vector function,

where point is a point of 2D curve that is calculated using curve—>PointOn(z,point) method. x and y
coordinates of 2D point are u and v parameters of surface(u,v) surface. A curve on surface is constructed by
introducing dependences of u and v parameters from some common parameter (¢): u=u(f), v=w(f). This
interdependence is described by curve two-dimensional curve. A curve on surface is shown in Figure
0.4.20.1.

surface
Fig. 0.4.20.1.
Two-dimensional curve in surface parameter definition area is shown in Figure 0.4.20.2.
Vmax
curve
Y v I
Y min
Y min
Umin Xmin Umax X max
Fig. 0.4.20.2.

Derivative of a curve on surface is calculated as a complex function
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dr(t) _ Osurface(u,v) dsurface (u,v)

i T derive.x + Tderive.y’

where derive is a derivative of two-dimensional curve that is calculated using curve—>FirstDer(t,derive)
method. Derivative of a curve on surface is located in a tangent plane of a surface constructed in the
specified point.

A curve on surface may be periodic if curve two-dimensional curve is periodic or surface is periodic, and
curve has coincident derivatives in the ends, and the extreme points of the curve are set off by a
corresponding period of periodic curve by surface first or second parameter.

surface of a curve on surface can be any surface, except for a surface limited by
MbCurveBoundedSurface curves. If required, MbCurveBoundedSurface base surface will be used to
construct a curve on surface limited by curves.

0.4.21. MbSilhouetteCurve Silhouette Curve

MbSilhouetteCurve class is declared in cur_silhouette curve.h file.

MbSilhouetteCurve silhouette curve is an inheritor of MbSurfaceCurve curve on surface. A silhouette
curve is described by MbSurface* surface surface, MbCurve* curve two-dimensional curve in surface
parameter space, closed curve periodicity sign, perspective perspective sign, eye gaze vector, and species
curve type. There are some other parameters of the curve that are not mandatory, they are used to speed up
curve methods.

Silhouette curve is a curve on surface; the curve divides the surface into parts that are visible or invisible
from the observation point. If perspective=true, then the observation point is described by eye gaze vector. If
perspective=false, then the observation point is at an infinite distance, and eye gaze vector describes the
direction from the observation point to the surface. Normal to surface at silhouette curve is orthogonal to a
straight line that connects this point of surface and the observation point.

In particular case, when an exact silhouette curve of the surface can be constructed, species curve type is
equal to cbt Ordinary. For example, silhouette curve of a sphere is a circle. In particular case, exactCurve
exact 3D curve is constructed; this curve accurately describes the silhouette of the surface and it is used to
calculate radius vector of silhouette curve and its derivatives.

In general, species curve type has cbt_Specific value, and curve two-dimensional curve is a spline that
approximates surface silhouette. In general, a point in silhouette curve is calculated by iterative method that
uses curve two-dimensional curve as an initial approximation.

Parameter definition area of silhouette curve surface coincides with that of curve two-dimensional curve.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(¢) = surface( u, v ) vector function,
where u and v are coordinates of two-dimensional point, its initial approximation is calculated using curve—
>PointOn(z,point), u=point.x, v=point.y method. Then u and v parameters are improved by iterative method
that uses the following equation
vector n(u,v) =0,
where n(u,v) is a normal to the surface that is calculated using surface—>Normal(x,v,n) method, vector is

gaze vector (vector=eye for an observation point that is at an infinite distance ). A silhouette curve of torus
surface is shown in Figure O.4.21.1.
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Fig. 0.4.21.1.

The silhouette curve of torus surface from other observation point is shown in Figure 0.4.21.2.

Fig. 0.4.21.2.

When a silhouette curve is crossed, a scalar product of surface normal vector and gaze vector always
changes its sign. Silhouette curve is always closed or it starts and ends at surface edges. A silhouette curve is
used to construct projections of the curved surface silhouette on a plane.

0.4.22. MbContourOnSurface Contour on Surface

MbContourOnSurface class is declared in cur_contour_on_surface.h file.

MbContourOnSurface contour on surface is described by MbSurface* surface surface and MbContour*
contour two-dimensional contour in surface parameter space. There are some other parameters of the curve
that are not mandatory, they are used to speed up curve methods.

A contour on surface is a composite curve, so it can have bends in joining points of segments of 2D
contour. A contour on surface is a projection of surface parameter contour 2D space into 3D space. contour
2D contour can be located outside of surface parameter definition area. Contour parameter definition area on
a surface coincides with that of 2D contour.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(¢) = surface( point.x, point.y ) vector function,
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where point is a point of 2D contour that is calculated using contour—>PointOn(¢,point) method. x and y
coordinates of 2D point are u and v parameters of surface(u,v) surface. A contour on surface is constructed
by introducing interdependence of u and v parameters and some their common parameter (¢): u=u(t), v=v(f).
This interdependence describes contour 2D contour. A derivative of contour on surface is calculated as a
complex function

dr(t) Odsurface(wv) dsurface (u,v)

X+ ————den )
m ou derive. F derive.y

where derive is a derivative of 2D contour that is calculated using contour—>FirstDer(t,derive) method. A
derivative of the contour on surface lies in tangent plane of a surface constructed in the specified point. A
contour on surface is shown in Figure 0.4.22.1.

surface

contour

Fig. 0.4.22.1.

A contour on surface may be periodic if contour 2D contour is periodic or surface surface is periodic,
and contour end points are set off for a corresponding period of the periodic curve using surface first or
second parameter.

A periodic contour on surface is usually used to describe a boundary of this surface.

Contour surface may be any surface, besides the surface limited by MbCurveBoundedSurface curves.
MbCurveBoundedSurface base surface may be used to construct a contour on a surface limited by curves.

0.4.23. MbContourOnPlane Contour on Plane

MbContourOnPlane class is declared in cur_contour_on_plane.h file.

MbContourOnPlane contour on plane is an inheritor of MbContourOnSurface class. A contour on plane is
described by MbSurface* surface surface and MbContour* contour 2D contour in surface parameter space.
There are some other parameters of the curve that are not mandatory, they are used to speed up curve
methods.

A contour on plane is a composite curve, so it can have bends in joining points of 2D contour segments. A
contour on plane is a projection of plane parameter 2D contour into 3D space. Two-dimensional contour can
be located outside of plane parameter definition area. Parameter definition area of a contour on plane
coincides with that of 2D contour.

In PointOn( double & ¢, MbCartPoint3D & r ) method, r curve radius vector is described by

r(¢) = position.origin + (point.x position.axisX) + (point.y position.axisY) vector function,

where position is a local coordinate system of surface plane, point is a point in 2D contour that is calculated
using contour—>PointOn(z,point) method. A contour on plane is shown in Figure 0.4.23.1.
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Fig. 0.4.23.1.

A contour on plane may be periodic if 2D contour is periodic or surface is periodic, and contour end
points are set off for a corresponding period of the periodic curve using the first or the second surface
parameter.

A periodic contour on plane is usually used to describe the boundaries of this surface.

A contour on plane is similar to a contour on surface, but it provides higher computation speed.

0.4.24. MbSurfacelntersectionCurve Surface Intersection Curve

MbSurfacelntersectionCurve class is declared in cur_surface intersection.h file.

MbSurfacelntersectionCurve surface intersection curve is described by two curves (MbSurfaceCurve
curveOne and MbSurfaceCurve curveTwo) that lie on intersecting surfaces, buildType construction
parameter and tolerance accuracy. There are some other parameters of the curve that are not mandatory, they
are used to speed up curve methods.

curveOne(?) and curveTwo(?) curves have the same ¢ parameter ranges and they coincide in space within
some accuracy. buildType parameter of intersection curve describes curve type and stores data on curve
radius vector calculation method. buildType parameter takes the following wvalues: cbt Specific,
cbt_Ordinary, cbt Boundary, cbt Tolerant. In Fig. 0.4.24.1, you can see two surfaces and their intersection
curve.
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Fig. 0.4.24.1.

In Fig. 0.4.24.2 and 0.4.24.3, you can see curves on surfaces that are used to construct an intersection curve.

Fig. 0.4.24.2.
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Fig. 0.4.24.3.

In general, intersection curve has cbt_Specific type, curveOne.curve and curveTwo.curve 2D curves are
splines that approximate the intersection of curveOne.surface and curveTwo.surface surfaces. The splines
on surfaces have aligned control points. curveOne and curveTwo splines on surfaces coincide and have the
same parameters in control points. MbSurfacelntersectionCurve curve also returns the exact value of point
radius vector at the sections between control points of the splines. In general, a point on the intersection
curve is calculated by iterative method that uses curveOne.curve and curveTwo.curve two-dimensional
curves as an initial approximation.

In special cases, intersection curve has cbt Ordinary, cbt Boundary, cbt Tolerant types, and a point of
intersection curve is calculated as the arithmetic average of radii vectors of curveOne(?) and curveTwo(?)
curves.

If buildType=cbt Ordinary, then MbSurfacelntersectionCurve curve exactly describes the intersection of
the curves, and curveOne(?) and curveTwo(?) curve coincide in space. An example of such curve is an
intersection curve of a plane and a cylindrical surface having its axis orthogonal to the plane, see Figure
0.4.244.
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buildType = cbt_Ordinary

Fig. 0.4.24.4.

On a plane, curveOne.curve is a circle; and on a cylindrical surface, curveTwo.curve is a segment
having parametric length equal to the length of 2D parametric curve on the plane. In order to ensure equality
of parametric lengths, a MbReparam reparametrized curve is constructed based on the segment.

If buildType=cbt Boundary, then MbSurfacelntersectionCurve curve describes surface edge, see
Figure 0.4.24.5. The following equations hold for such curve: curveOne.curve=curveTwo.curve and
curveOne.surface=curveTwo.surface.

buildType = cbt_Boundary

Fig. 0.4.24.5.

If buildType=cbt_Tolerant, then MbSurfacelntersectionCurve curve describes the intersection of surfaces
approximately. curveOne(?) and curveTwo(?) coincide in space with tolerance accuracy. Such curves are
constructed in the cases when any other construction is impossible. For example, if it is required to cross two
surfaces that touch each other not exactly, but rather with some "noise".

In PointOn( double & ¢, MbMatrix3D & r ) method, r curve radius vector is described by

r(f) = 0.5 ( curveOne.surface(u1,vi) + curveTwo.surface(u,v,) ) vector function,

where u1, v1 are coordinates of 2D point, its initial approximation is calculated using curveOne.curve—
>PointOn(z,pointl), w=pointl.x, vi=pointl.y method, uz, v» are coordinates of 2D point, its initial
approximation is calculated using curveTwo.curve—>PointOn(z,point2), uo=point2.x, v>2=point2.y method.
In general, (buildType=cbt Specific), u1, vi, uz, v2 parameters are clarified by iterative method that uses the
following equations:
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curveOne.surface(u1,vi) = plane(x,y),
curveTwo.surface(u,v2) = plane(x,y),

where plane is a plane perpendicular to the segment connecting two closest control points of the intersection
curve. A general case of intersection curve and control points that were used to construct curveOne and
curveTwo curves are shown in Figure 0.4.24.6.

buildType = cbt_Specific

Fig. 0.4.24.6.

Parameter range of intersection curve coincides with that of shared parameter of curveOne and
curveTwo curves. Surface intersection curve may be periodic.

Surface intersection curve contains data on spaceCurve 3D curve that coincides with the intersection
curve within folerance accuracy. spaceCurve curve is used to construct flat projections of edges.
spaceCurve curve is an auxillary object; it is calculated only if it is required.
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0.5. SURFACES

Surfaces belong to the family of MbSpaceltem three-dimensional geometric objects. Surfaces play a
major role in construction of a geometric model. Surfaces are used to describe smooth sections of geometric
form for simulated objects. Surfaces are constructed using analytical functions based on a set of points, as
well as based on curves and based on surfaces. We'll use bold Roman font to designate vectors, radius
vectors of points, and matrices in three-dimensional space.

0.5.1. MbSurface Surface

MbSurface class is declared in surface.h file.
MbSurface is an inheritor of MbSpaceltem class, see Figure O.5.1.1.

[MbReﬂtem] [TapeBase]

—

[MbSpaceItem

A

MbSurface

The surface is an abstract class. The following surfaces that are inheritors of MbSurface class are realized in
C3D geometric kernel:

MbPlane — a plane,

MbCylinderSurface — a cylindrical surface,

MbConeSurface — a conical surface,

MbSphereSurface — a spherical surface,

MbTorusSurface — a toroidal surface,

MbExtrusionSurface — an extrusion surface,

MbRevolutionSurface — a rotation surface,

MbExpansionSurface — a plane-parallel kinematic surface,

MbSpiralSurface — a spiral surface,

MbEvolutionSurface — a kinematic surface,

MbExactionSurface — a kinematic surface with adaptation,

MbSectorSurface — a sectorial surface,

MbRuledSurface — a ruled surface,

MbLoftedSurface — a surface based on a family of curves,
MbElevationSurface — a surface based on a family of curves and a guiding curve,
MbCornerSurface — a surface based on three curves,

MbCoverSurface — a surface based on four curves,

MbCoonsPatchSurface — a bicubic Coons surface,

MbMeshSurface — a surface based on a network of curves,

MbJoinSurface — a joint surface,

MbSplineSurface — NURBS surface (NonUniform Rational B-Spline surface),
MbOffsetSurface — an equidistant surface,

MbChamferSurface — a chamfer surface,

MbFilletSurface — a fillet surface,

MbChannelSurface — a fillet surface with variable radius,
MbCurveBoundedSurface — a surface with arbitrary borders.

Figure 0.5.1.1.

358



MbSurface is a vector function

surface (u,v)=[x(u,v) y(u,v) z(u,v)]

of two scalar parameters (¢ and v) that take values in Q connected two-dimensional area. The surface is a
continuous projection of Q connected 2D area in 3D space. Q area will be described in 2D Cartesian
coordinate system. In a particular case, () area is a rectangle, and surface parameters take values in
Umin<U<Umax, Vmin<V<Vmax ranges. In general case, Q area is described by 2D curves. x(u,v), y(u,v), z(u,v)
coordinates of surface(u,v) surface are single-valued continuous functions of # and v parameters.

Umin, Umax, Vmin, Vmax limits of parameter definition limits are returned by double GetUMin(), double
GetUMax(), double GetVMin(), and double GetVMax() surface methods, respectively.

We'll call the surface periodic by the first parameter if there is such p,>0 that
surface(utkp.,v)=surface(u,v), where k is an integer. We'll call the surface periodic by the second parameter
if there is such p,>0 that surface(u,vtkp,)=surface(u,v), where k is an integer. Definition area of periodic
surface parameter ranges within one period for the corresponding parameter.
bool IsUClosed() method returns "true" for a surface periodic by the first parameter.
bool IsVClosed() method returns "true" for a surface periodic by the second parameter.
double GetUPeriod() method returns p, period for a surface periodic by the first parameter or for a surface
that can be extended and made periodic. double GetVPeriod() method returns p, period for a surface that is
periodic by the second parameter or for a surface that can be extended and made periodic. Definition area of
periodic surface parameter is always limited by one period.

We'll use the following designations:

_ Osurface(u,v) dsurface (u,v)
wT o g Sy = v ;
d*surface (u,v) d*surface (u,v) _ 0°surface (u,v7) _ 0°surface (u,v) )
Suu = I PSw T P > Tuy dudv h dvdu
: 0> surface(w,v) B @ surface(u,v)_ B @ surface (u,v) B 0> surface (u,v)
Sow = T’ Wy guaudv YW gudvde VW T

for private derivatives of surface by its parameters.

The main surface method is
void PointOn( double & u, double & v, MbCartPoint3D & s ).
It returns s(u,v) radius vector of surface point for given parameters (u and v).
void DeriveU( double & u, double & v, MbVector3D & s, ),
void DeriveV( double & u, double & v, MbVector3D & s, ),
void DeriveUU( double & u, double & v, MbVector3D & s, ),
void DeriveUV( double & u, double & v, MbVector3D & s, ),
void DeriveVV( double & u, double & v, MbVector3D & s, ),
void DeriveUUU( double & u, double & v, MbVector3D & S ),
void DeriveUUV( double & u, double & v, MbVector3D & Suuv ),
void DeriveUVV( double & u, double & v, MbVector3D & suv ),
void DeriveVVV ( double & u, double & v, MbVector3D & s, )
methods respectively return S, Sv, Suu, Suvs Sw, Suuus Suuv, Suvvs Swy derivatives of surface radius vector for given
parameters (u and v). These methods adjust surface parameters if they go beyond the definition area (the
exception is MbPlane plane). If u parameter goes beyond [#min, #max] range then: a) the surfaces that are non-
periodic by the first parameter, move u parameter to the nearest limit umin OF umax; b) the surfaces that are
periodic by the first parameter add or subtract the required number of periods. If v parameter goes beyond
[Vmin, Vmax] range then: a) the surfaces that are non-periodic by the second parameter move v parameter to the
nearest limit vmin OF Vmax; b) the surfaces that are periodic by the first parameter add or subtract the required
number of periods.
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void _PointOn( double u, double v, MbCartPoint3D & s ) method

returns s(u,v) radius vector of the surface point for specified parameters u# and v both within surface
parameter definition area and outside it. Each non-periodic surface is extended outside the parameter
definition area using its own law. If there is no such law (in general case), then non-periodic surface is
extended outside the parameter definition area, it is extended tangentially to the corresponding extreme point
of the surface.

void _DeriveU( double u, double v, MbVector3D & s, ),

void _DeriveV( double u, double v, MbVector3D & s, ),

void _DeriveUU( double u, double v, MbVector3D & s, ),

void DeriveUV( double u, double v, MbVector3D & s, ),

void _DeriveVV( double u, double v, MbVector3D & s, ),

void _DeriveUUU( double u, double v, MbVector3D & S ),

void _DeriveUUV( double u, double v, MbVector3D & Suuv ),

void _DeriveUVV( double u, double v, MbVector3D& Suw ),

void _DeriveVVV( double u, double v, MbVector3D & s, )

methods respectively return Su, Sv, Suu, Suvs Svv, Suu, Suuvs Suvv, Sy derivatives of surface radius vector by « and v
parameters both within surface parameter definition area and outside it.

Surfaces reload the following methods of 3D geometrical object:
the methods involved in transformation of geometrical object:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
the methods that permit to copy, check for coinciding objects, check whether it's possible to make objects
coinciding and make them coinciding:

MbSpaceltem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceltem & item ),

bool IsSimilar( const MbSpaceltem & item ),

bool SetEqual( const MbSpaceltem& item ),

the methods that return type from enumeration of geometric objects:
MbeSpaceType IsA(),

MbeSpaceType Type(),

MbeSpaceType Family(),

the methods that ensure access to object internal data and their editing:
MbProperty & CreateProperty( MbePrompt name ),

void GetProperties( MbProperties & properties ),

void SetProperties( MbProperties & properties ),

the method that fills up a polygonal copy of a geometrical object,
void CalculateWire( double sag, MbMesh & mesh ).

In most cases a surface has rectangular parameter definition area. We'll separate
MbCurveBoundedSurface from all surfaces as it is a universal surface. MbCurveBoundedSurface has curved
edges and may have arbitrary cutouts inside. MbCurveBoundedSurface is constructed based on arbitrary
surface with rectangular parameter definition area.

0.5.2. MbPlane Plane

MbPlane class is declared in surf plane.h file.

MbPlane plane belongs to MbElementarySurface group of elementary surfaces. A plane is described by
XY plane in MbPlacement3D peosition local coordinate system. The first parameter is measured along
position.axisX vector, the second parameter is measured along position.axisY. Surface parameter definition
area describes umin, umax and vmin, vmax limits, see Figure 0.5.2.1.
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vmax <

Figure 0.5.2.1.
In PointOn( double u, double v, MbCartPoint3D & s ) method, radius vector of s plane is described by

s(u,v) = position.origin + u position.axisX + v position.axisY vector function.

A plane behaves like an infinite object, although it has extreme values of its parameters (umin, umax and
vmin, vmax) in its data. Please note that unlike other surfaces, in radius vector and its derivatives calculation
methods, the plane does not adjust u# and v parameters if they go beyond the definition area defined by umin,
umax and vmin, vmax values.

position local coordinate system may be either right- or left-handed. If local coordinate system is left-
handed then direction of surface normal is opposite to direction of position.axisZ vector.

0.5.3. MbCylinderSurface Cylindrical Surface

MbCylinderSurface class is declared in surf cylinder surface.h file.

MbCylinderSurface cylindrical surface belongs to MbElementarySurface group of elementary surfaces. A
cylindrical surface is described by radius and height defined in MbPlacement3D position local coordinate
system.

The first surface parameter is measured along the arc from position.axisX vector towards position.axisY
vector. The first surface parameter (u) takes values in umin<u<umax range. u=0 and u=2=n values correspond
to a point in XZ plane. A surface may be periodic by the first parameter. umax-umin=2mn holds for a periodic
surface; umax-umin<2m holds for a non-periodic surface.

The second surface parameter is measured in a straight line that goes along position.axisZ vector. Surface
second parameter (v) takes values in vmin<v<vmax range. v=0 corresponds to the beginning of the local
coordinate system, and v=1 corresponds to the pont located at distance Aeight from XY plane of surface local
coordinate system.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
radius (cos(u) position.axisX + sin(x) position.axisY) +
height v position.axisZ vector function.

A cylindrical surface is shown in Figure 0.5.3.1.
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Figure O.5.3.1.

Radius and height should be popsitive: radius>0, height>0. The following inequalities should hold for
surface limiting parameters: umin<umax, vmin<vmax.

position local coordinate system may be either right- or left-handed. If the local coordinate system is
right-handed, then the normal is directed towards surface convexity (from the surface axis). If the local
coordinate system is left-handed then the normal is directed towards surface concavity (to the surface axis).

0.5.4. MbConeSurface Conical Surface

MbConeSurface class is declared in surf cone surface.h file.

MbConeSurface conical surface belongs to MbElementarySurface group of elementary surfaces. A
conical surface is described by radius, height and angle cone angle defined in MbPlacement3D position
local coordinate system.

The first surface parameter is measured along the arc from position.axisX vector towards position.axisY
vector. The first surface parameter (u) takes values in umin<u<umax range. u=0 and u=2mn values correspond
to a point in XZ plane. A surface may be periodic by the first parameter. umax-umin=2mn holds for a periodic
surface; umax-umin<2mw holds for a non-periodic surface.

The second surface parameter is measured in a straight line that goes along pesition.axisZ vector. Surface
second parameter (v) takes values in vmin<v<vmax range. v=0 corresponds to the beginning of the local
coordinate system, and v=1 corresponds to the pont located at distance Aeight from XY plane of surface local
coordinate system.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
(radius + height v tg(angle)) (cos(u) position.axisX + sin(u) position.axisY) +

height v position.axisZ vector function.

A conical surface is shown in Figure O.5.4.1.
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radius

origin

Figure 0.5.4.1.

Radius and height should be positive, and angle modulo should not exceed n/2: radius>0, height>0, -
n/2<angle<n/2. If angle=0, then the conical surface is equivalent to cylindrical surface. The following
inequalities should hold for surface limiting parameters: umin<umax, vmin<vmax. The following value of the
second parameter corresponds to surface pole: vV=—radius / (height tg(angle)). vmax and vmin limits take the
values at which the surface is located in one side from the pole.

position local coordinate system may be either right- or left-handed. If the local coordinate system is
right-handed, then the normal is directed towards surface convexity (from the surface axis). If the local
coordinate system is left-handed, then the normal is directed towards surface concavity (to the surface axis).

0.5.5. MbSphereSurface Spherical Surface

MbSphereSurface class is declared in surf sphere surface.h file.

MbSphereSurface sphere belongs to MbElementarySurface group of elementary surfaces. A sphere is
described by radius determined in MbPlacement3D position local coordinate system.

The first surface parameter is measured along the arc from position.axisX vector towards position.axisY
vector. The first surface parameter () takes values in umin<u<umax range. u=0 and u=2n values correspond
to a point in XZ plane. A surface may be periodic by the first parameter. umax-umin=2mn holds for a periodic
surface; umax-umin<2w holds for a non-periodic surface.

The second surface parameter is measured along the arc from XY plane of local coordinate system
towards position.axisZ vector. Surface second parameter (v) takes values in vmin<v<vmax range. v=0
corresponds to a point in XY plane of surface local coordinate system. A surface is non-periodic by the
second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
radius (cos(u) position.axisX + sin(x) position.axisY) +

radius sin(v) position.axisZ vector function.

A sphere is shown in Figure O.5.5.1.
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Figure 0.5.5.1.

The radius of sphere should be greater than zero: radius>0. A sphere has poles for its parameter (vr/2 and
v=m/2). The following inequalities should hold for surface limiting parameters: umin<umax, vmin<vmax,
vmax<=mu/2, vmin>=—m/2.

position local coordinate system may be either right- or left-handed. If local coordinate system is right-
handed, then the normal is directed from the sphere. If local coordinate system is left-handed, then the
normal is directed inside the sphere.

0.5.6. MbTorusSurface Toroidal Surface

MbTorusSurface class is declared in surf torus_surface.h file.

MbTorusSurface toroidal surface belongs to MbElementarySurface group of elementary surfaces. A
toroidal surface is described by majorRadius radius of centers and minorRadius tube radius in
MbPlacement3D position local coordinate system.

The first surface parameter is measured along the arc from position.axisX vector towards position.axisY
vector. The first surface parameter (u) takes values in umin<u<umax range. u=0 and u=2mn values correspond
to a point in XZ plane. A surface may be periodic by the first parameter. umax-umin=2n holds for a periodic
surface; umax-umin<2mw holds for a non-periodic surface.

The second surface parameter is measured along the arc from XY plane of local coordinate system
towards position.axisZ vector. Surface second parameter (v) takes values in vmin<v<vmax range. v=0 and
v=21 values correspond to a point in XY plane of local coordinate system in the surface. If
majorRadius>minorRadius, then a surface may be periodic by the second parameter. vmax-vmin=2m holds
for a periodic surface; vmax-vmin<2m holds for a non-periodic surface.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
(majorRadius + (minorRadius cos(v)) (cos(u) position.axisX + sin(«) position.axisY) +
minorRadius sin(v) position.axisZ vector function.
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A toroidal surface is shown in Figure O.5.6.1.

minorRadius

maiorRadius !l

Figure 0.5.6.1.

Tube radius should be positive: minorRadius>0. Radius of centers should not be smaller than radius of the
tube taken with minus sign: majorRadius>—minorRadius. If majorRadius<minorRadius then surface has a
pole for v=arccos(majorRadius/minorRadius)parameter and for v=2m—arccos(majorRadius/minorRadius)
parameter. The following inequalities should hold for surface limiting parameters: umin<umax, vmin<vmax.

position local coordinate system may be either right- or left-handed. If local coordinate system is right-
handed, then the normal is directed from the surface tube. If local coordinate system is left-handed, then
normal is directed inside the surface tube.

0.5.7. MbExtrusionSurface Extrusion Surface

MbExtrusionSurface class is declared in surf extrusion_surface.h file.

MbExtrusionSurface extrusion surface belongs to MbSweptSurface group of swept surfaces. Extrusion
surface is a special case of sliding surfaces with rectilinear guide curve. Extrusion surface is described by
MbCurve3D* curve curve generator, MbVector3D direction vector specifying extrusion direction and
distance extrusion length.

The first surface parameter (u#) coincides with curve generator parameter. The first surface parameter
takes values in umin<u<umax range that corresponds to curve generator range. If the curve generator is
periodic, then the surface is periodic by the first parameter.

Surface second parameter (v) takes values in vmin<v<vmax range. v=0 value corresponds to a point on the
curve generator; v=1 corresponds to a point on the curve generator displaced by direction*distance vector.
The surface can't be periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = curve(u) + (direction distance v) vector function.

Extrusion surface is shown in Figure O.5.7.1.
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Figure 0.5.7.1.

The following inequality should hold for the limits of the second parameter: vmin<vmax.

0.5.8. MbRevolutionSurface Revolution Surface

MbRevolutionSurface class is declared in surf revolution surface.h file.

MbRevolutionSurface revolution surface belongs to MbSweptSurface group of swept surfaces.
Revolution surface is a special case of swept surface, its guiding curve is a circle or its arc. Revolution
surface is described by MbCurve3D* curve curve generator, MbPlacement3D position local coordinate
system, its peosition.axizZ vector is revolution axis, planeData sign indicating that the curve and the
revolution axis are located in one plane, poleMin sign indicating the presence of a surface pole at the initial
value of the first parameter, poleMax sign indicating the presence of a surface pole at the end value of the
first parameter, uPoleMin and uPoleMax values of surface first parameter in surface poles (if the
corresponding pole exists). There are some other surface parameters that are not mandatory, they are used to
speed up surface methods.

The first surface parameter (#) coincides with curve generator parameter. The first surface parameter
takes values in umin<u<umax range that corresponds to curve generator range. If the curve generator is
periodic, then the surface is periodic by the first parameter.

Surface second parameter (v) takes values in vmin<v<vmax range. v=0 and v=2x values correspond to a
point in curve generator. The surface may be periodic by the second parameter. vmax-vmin=2mn holds for a
periodic surface; vimax-vmin<2z holds for a non-periodic surface.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin + (curve(u) — position.origin) M(v) vector function,

where M(v) is rotation matrix. Please note that multiplication of (curve(u)—position.origin) vector by M(v)
matrix is a post-multiplication. Rotation matrix looks as follows

cosv —sinv O
MO)=A"|sinv cosv O|-A=
0 0 1
position.axisX ' [cosy —sinv 0 position.axisX
= | position.axisY | -|sinv cosv O |-| position.axisY
position.axisZ 0 0 1 position.axisZ
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A is a matrix used to transform coordinates of radius vector from position local coordinate system to the
global coordinate system. Rows of A matrix consist of base vectors of the local coordinate system. M(v)
matrix transforms curve(u) position.origin vector into the local coordinate system, rotates it by v angle
around the rotation axis, and returns the rotated vector back into the global coordinate system. Revolution
surface is shown in Figure O.5.8.1.

curve(u)

origin

Figure 0.5.8.1.

If initial or end edge of curve generator crosses the rotation axis then the surface has a pole for umin or
umax parameter respectively. The following inequality should hold for the limits of the second parameter:
vmin<vmax.

Points of the curve generator are rotated along an arc around position.axizZ vector from position.axisX
vector towards position.axisY vector. position local coordinate system may be either right- or left-handed.

0.5.9. MbExpansionSurface Motion Surface

MbExpansionSurface class is declared in surf expansion_surface.h file.

MbExpansionSurface motion surface belongs to MbSweptSurface group of swept surfaces. Motion
surface is a special case of swept surface with a curvilinear guiding curve. A motion surface is described by
MbCurve3D* curve curve generator, MbCurve3D* spine guiding curve, and MbCartPoint3D origin point
that is the initial point of the guiding curve. The surface is constructed by moving the curve generator along
the guiding curve. In a particular case, curve generator of motion surface may change its shape. In the latter
case, the curve has the following components: brink second curve generator is available, ending is the end
point of the guiding curve, tmin is the initial parameter of brink curve, and dt is the derivative of brink
curve parameter by curve curve generator parameter. dt derivate is described by the following equation:

tmax — tmin
dt=————

umax —umin’

where tmax is the ending parameter of brink curve. In general case, a pointer to the second curve generator
(brink) may be zero, that means that second curve generator is missing.

The first surface parameter (#) coincides with curve curve generator parameter. The first surface
parameter takes values in umin<u<umax range that corresponds to curve generator range. If the curve
generator is periodic, then the surface is periodic by the first parameter.
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The first surface parameter (v) coincides with guiding curve parameter and it takes values in
vmin<v<vmax range. The surface may be periodic by the second parameter if the guiding curve is periodic
and the second curve generator is missing.

In general case in PointOn( double u, double v, MbCartPoint3D & s ) method, s plane radius vector is
described by

s(u,v) = spine(v) + curve(u) — origin vector function.

The general case for sliding surface is shown in Figure O.5.9.1.

spine(v)

origin

Figure O.5.9.1.
In a special case for PointOn( double u, double v, MbCartPoint3D & s ) method, s plane radius vector is
described by

s(u,v) = spine(v) + (curve(u) — origin) (1-w) + (brink(¢) — ending) w vector function,

v —Vvmin . . . R
where W= —————— =tmint(u—umin)dt. A special case of sliding surface is shown in Figure O.5.9.2.
vmax — vmin

brink(r)

ending

spine(v)

origin

Figure 0.5.9.2.
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To ensure that there are no surface self-intersections, curve generating and guiding curve should not have
sections parallel to each other. In certain cases, a sliding surface may have special points.

0.5.10. MbSpiralSurface Spiral Surface

MbSpiralSurface class is declared in surf spiral surface.h file.

MbSpiralSurface spiral surface belongs to MbSweptSurface group of swept surfaces. A spiral surface is a
special case of swept surface with a guiding curve having cylindrical spiral form. A spiral surface is
described by MbCurve3D* curve curve generator, MbPlacement3D position local coordinate system,
position.axizZ vector that is spiral axis, radius spiral radius, step spiral pitch, origin spiral initial point
position, as well as vmin and vmax spiral limiting parameters. There are some other surface parameters that
are not mandatory, they are used to speed up surface methods.

Spiral axis coincides with position.axisZ axis in the local coordinate system. The first surface parameter
(u) coincides with curve generator parameter. The first surface parameter takes values in umin<u<umax
range that corresponds to curve generator range. If the curve generator is periodic, then the surface is
periodic by the first parameter.

Surface second parameter (v) takes values in vmin<v<vmax range. v=0 corresponds to a point in the curve
generator. v= 27 values of the second parameter correspond to the point in the curve generator with
position.axisZ translational vector multiplied by step. The surface can't be periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = position.origin +
radius (cos(?) position.axisX + sin(¢) position.axisY) + ((¢ step/2x) position.axisZ) +
(curve(u) — origin) M(v) vector function,

where M(v) is rotation matrix. Please note that multiplication of (curve(u)—origin) vector by M(v) matrix is
a post-multiplication. Rotation matrix looks as follows

cosv —sinv O
M@»)=A"-|sinv cosv O| A=
0 0 1
position.axisX ' [cosy —sinv 0O position.axisX
= | position.axisY | :|sinv cosv O |[-| position.axisY
position.axisZ 0] 0 1 position.axisZ

A is a matrix used to transform coordinates of radius vector from position local coordinate system to the
global coordinate system. Rows of A matrix are the base vectors of the local coordinate system. M(v) matrix
moves curve(u)—origin vector into the local coordinate system, rotates it by v angle around the rotation axis
in it, and transforms the rotated vector back into the global coordinate system. A spiral surface is shown in
Figure 0.5.10.1.
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Figure O.5.10.1.

The following inequality should hold for the limits of the second parameter: vmin<vmax.

0.5.11. MbEvolutionSurface Swept Surface

MbEvolutionSurface class is declared in surf evolution_surface.h file.

MbEvolutionSurface swept surface belongs to MbSweptSurface group of swept surfaces. A swept surface
is the general case of sliding surface with an arbitrary guiding curve. A swept surface is described by
MbCurve3D* curve curve generator, MbCurve3D* spine guiding object, and MbCartPoint3D origin
location of guiding curve original point. There are some other surface parameters that are not mandatory,
they are used to speed up surface methods.

The first surface parameter («) coincides with curve parameter of the curve generator. The first surface
parameter takes values in umin<u<umax range that corresponds to curve generator range. If the curve
generator is periodic, then the surface is periodic by the first parameter.

spine guiding object replaces the guiding curve; it was constructed based on the curve and differs from
the latter in that it can generate a local coordinate system associated with the curve. Surface second
parameter (v) coincides with the parameter of the curve of spine guiding object. Surface second parameter
takes values in vmin<v<vmax range that corresponds to guiding curve parameter range. If the guiding
curve is periodic, then the surface is periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = spine(v) + (curve(u) — origin) M(v) vector function,

where M(v) is a matrix associated with the guiding curve. Please note that multiplication of (curve(u)—
origin) vector by M(v) matrix is a post-multiplication. M(v) matrix looks as follows

M(©) = AN (vmin)- A(v),
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where A(v) is the matrix used to transform coordinates of point radius vector in movable coordinate system
associated with the guiding curve into the global coordinate system. A(v) matrix depends on second surface
parameter. Rows of A(v) matrix are formed by base vectors of the movable coordinate system.

i1(v)
A(v) = [(V)]
i3 (v)

where i1(v) is a tangent vector of the guiding curve; i>(v) is a vector orthogonal to i1(v) and associated with
direction vector of spine guiding object; i3(v) is a vector orthogonal to i1(v) and i>(v). Revolution surface is
shown in Figure O.5.11.1.

curve(u)

\______..—-—-'—\

spine(v)

Figure O.5.11.1.

i1(v) tangent vector is calculated based on the guiding curve. ix(v) vector is calculated from the condition
of smooth transition from a point to a point of the guiding curve, and orthogonality condition for ii(v). i3(v)
vector is calculated as the vector product of i;(v) vector and i»(v) vector.

0.5.12. MbExactionSurface Swept Surface with Adaptation

MbExactionSurface class is declared in surf exaction_surface.h file.

MbExactionSurface swept surface with adaptation is an inheritor of MbEvolutionSurface swept surface.
A swept surface with adaptation is used to construct bodies with the help of kinematic operations with kinked
composite guiding curves, see Figure O.5.12.1.
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curve(i)

Figure 0.5.12.1.

MbExactionSurface swept surface adjusts its ends in order to join it to other surface.

0.5.13. MbSectorSurface Sectorial Surface

MbSectorSurface class is declared in surf sector surface.h file.

MbSectorSurface sectorial surface belongs to MbSweptSurface group of swept surfaces. A sectorial
surface is described by MbCurve3D* curve curve and MbCartPoint3D origin point.

The first surface parameter (u) coincides with curve curve parameter. The second surface parameter takes
values belonging to umin<u<umax range that corresponds to curve range. If curve is periodic then surface is
periodic by the first parameter.

Surface second parameter (v) takes values in vmin<v<vmax range. v=vmin value corresponds to a point in
curve; v=vmax corresponds to origin point. The surface can't be periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = curve(u) (1-w) + origin w vector function,

¥ — vmin ) ) o
where W = — . A sectorial surface is shown in Figure O.5.13.1.
vmax — vmin
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Figure 0.5.13.1.

Curves of s(const,v) surface are line segments. The surface has a pole in origin point at v=vmax. A
sectorial surface is a special case of ruled surface.

0.5.14. MbRuledSurface Ruled Surface

MbRuledSurface class is declared in surf ruled_surface.h file.

MbRuledSurface ruled surface belongs to MbSweptSurface group of swept surfaces. A ruled surface is
described by MbCurve3D* curve curve, MbCurve3D* sline curve, poleMin sign indicating availability of
surface pole at the initial value of the first parameter, poleMax sign indicating availability of surface pole at
the end value of the first parameter, tmin initial parameter of sline curve, dr derivative of sline curve
parameter by curve curve parameter and #ype surface form. There are some other surface parameters that are
not mandatory, they are used to speed up surface methods.

The first surface parameter (u) coincides with curve curve parameter. The second surface parameter takes
values belonging to umin<u<umax range that corresponds to curve range. dt derivate is described by the
following equation:

tmax — tmin
dt =———
umax —umin

where tmax is the terminal parameter of sline curve. If curve curve and sline curve are periodic, then the
surface is periodic by the first parameter.
Surface second parameter (v) takes values in vmin<v<vmax range. v=vmin corresponds to a point in curve
curve; v=vmax corresponds to a point in sline curve. The surface can't be periodic by the second parameter.
In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = curve(u) (1-w) + sline(?) w vector function,

v - vmin
where W = ———— =tmin+(u—umin)dt. A ruled surface is shown in Figure O.5.14.1.
vmax — vmin
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Figure O.5.14.1.

Curves at s(const,v) surface with u=const parameters are straight line segments. A surface may have a
pole if curve curve or sline curve is reduced to a point, or if curve curve and sline curve coincide at one
edge.

0.5.15. MbLoftedSurface Surface Based on a Family of Curves

MbLoftedSurface class is declared in surf lofted surface.h file.

MbLoftedSurface surface is described by RPArray<MbCurve3D>uCurves set of curves, vParams set of
values of second surface parameter for curves, vLabels set of signs for identical curves, umin, umax, vmin,
and vmax parameter limits, uClosedand vClosed surface closure signs by the first and the second parameters,
directional vector for non-periodic curve at vmin MbVector3D derivel, directional vector for non-periodic
curve at vmax MbVector3D derive2, poleUMin, poleUMax, poleVMin and poleVMax signs indicating
availability of surface poles at the border of the definition area. There are some other surface parameters that
are not mandatory, they are used to speed up surface methods.

The first surface parameter () coincides with the parameters of curves. All curves should have the same
parameter range. MbReperamCurve3D curves may be used for this purpose. The first surface parameter
takes values in umin<u<umax range that corresponds to curves parameter range. If all curves in curves set
are periodic then the surface may be periodic by the first parameter.

Surface second parameter (v) takes values in vmin<v<vmax range. v=vmin value corresponds to the initial
value of vParams[0] set; v=vmax corresponds to the terminal value of vParams[vParams.MaxIndex()] set.
The surface may be periodic by the second parameter.

If all curves of curves set are different, then the values of vLabels set are equal to the index of curves in
curves set. If there are the same adjacent curves in curves set that are displaced with respect to each other,
then respective values of vLabels are equal to the minimum index of the cloned curve in curves set.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = (1-3w?+2w?) curves[i](u) + Bw*+2w?) curves[i+1](u) +
(w—2w*+w?) derive[i](u) + (—w*+w?) derive[i+1](u) (vParams[i+1]- vParams[i]) vector function,

v - vParams (] ] ) o
where W = - —, derive[/] and derive[i+1] are derivatives of curves[i] and
vParams|[{ + 1] — vParams[]

curves[i+1], respectively. i index of working segment used to calculate radius vector of the point and its
derivatives are calculated from vParams[i|<v<vParams[i+1]. If there are equal values among adjacent
elements of vLabels set then the surface between corresponding curves is equal to the extrusion surface. A
surface based on a family of curves is shown in Figure O.5.15.1.
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Figure O.5.15.1.

Surface form depends on location of the curves and vParams set of parameter values at which the surface
goes by curves. In order to prevent self-intersections of the surface, the values of vParams set should vary in
proportion to the average distance between the curves.

s(const,v) surface curves with u=const parameters are MbHermit3D Hermite curves. A surface may have
poles, if the first and/or the last curves curve is reduced to a point, or if all curves curves coincide at one
edge.

0.5.16. MbElevationSurface Surface Based on a Family of Curves And a
Guiding Curve

MbElevationSurface class is declared in surf elevation surface.h file.

A surface based on a family of curves and a guiding curve is an inheritor of MbLoftedSurface class.
Similar to MbLoftedSurface surface, MbElevationSurface surface is described by a set of generating curves
(RPArray<MbCurve3D>uCurves), vParams set of values of second surface parameter for curves, umin,
umax, vmin, vmax parameter limits, uClosed and vClosed surface closure signs for first and second
parameters, and poleUMin, poleUMax, poleVMin, poleVMax signs indicating presence of surface poles at the
border of the definition area. In addition to parameters listed above, MbElevationSurface surface is also
described by MbCurve3D* spine guiding curve. There are some other surface parameters that are not
mandatory, they are used to speed up surface methods.

The first surface parameter (u) coincides with the parameters of curves. All curves should have the same
parameter range. MbReperamCurve3D curves may be used for this purpose. The first surface parameter
takes values in umin<u<umax range that corresponds to curves parameter range. If all curves in curves set
are periodic, then the surface may be periodic by the first parameter.

The second parameter of v surface coincides with the parameter of spine guiding curve. Surface second
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parameter takes values in vmin<v<vmax range that corresponds to guiding curve parameter range. If the
guiding curve is periodic, then the surface is periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is calculated
similarly to MbLoftedSurface surface radius vector subject to adjustment of guiding curve offset. A surface
based on a family of curves and a guiding curve is shown in Figure O.5.16.1.

curves[1]

curves[0] curves[2]

Figure 0.5.16.1.

Surface form depends on location of generating curves, a guiding curve and vParams set of parameter
values at which the surface crosses the curves. The values of vParams set are calculated by projecting mass
centers of generating curves on the guiding curve.

0.5.17. MbCornerSurface Surface Based on Three Curves

MbCornerSurface class is declared in surf corner surface.h file.

MbCornerSurface surface based on three curves is described by MbCurve3D* curve0, curvel, curve2
curves, three MbCartPoint3D vertex[3] points and three pairs of limits for parameters of the corresponding
curves: tOmin, tOmax, tlmin, t\max, 2min, 2max. There are some other surface parameters that are not
mandatory, they are used to speed up surface methods.

Surface first parameter (1) takes values in 0<u<l range. The surface can't be periodic by the first
parameter. The surface has a special point at the minimum value of the first parameter u=0. A derivative of
the radius vector by the second parameter in the special point is zero.

Surface second parameter (v) takes values in 0<v<1 range. The surface can't be periodic by the second
parameter.

curve(, curvel, curve2 curves should have intersection points or crossing points. Omin, tOmax, t1min,
tlmax, 2min, 2max curve parameters are calculated using the intersection points or crossing points of the
curves; these parameters define vertex[3] points and working segments of the curves. The directions of
curves are of no importance for the surface.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = w0 (curve2(z2) + curvel(sl) — vertex[0]) +
+ wl (curve0(z0) + curve2(s2) — vertex[1]) +
+ w2 (curvel(z1) + curve0O(s0) — vertex[2]) vector function,

where w0=1-u, w1=0.5(u—uv), w2=0.5(u+uv) are barycentric coordinates of the surface, {0=w210min+(1—
w2)t0max, s0=(1-w1)tOmintwl-t0max are parameters of curve0 curve, {1=w0¢1min+(1-w0)t1max, s1=(1-
w2ytlmintw2tlmax are parameters of curvel curve, 2=wl2mint+t(1-wl)y2max, s2=(1—
wO0) 2mintw0t2max are parameters of curve2 curve. A surface based on three crossing curves is shown in
Figure 0.5.17.1.
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Figure O.5.17.1.

In Figure O.5.17.2, you can see a surface constructed on three identical circular arcs, the surface coincides

with a part of sphere surface: planes of circular arcs are orthogonal to each other, arcs intersect in the
endpoints, any arc makes a quarter of a circle.

vertex|2]

curvel curve(

vertex[0] vertex|[1]

curve?

Figure O.5.17.2.

Surface form depends on the shape of the curves. If curves do not intersect, then surface does not contain
them. If curves intersect then vertex[3] points are located in intersection points, and the surface contains
segments of the curves: if w0=0 then the surface contains a segment of curve0 curve; if wl=0 then the
surface contains a segment of curvel curve; if w2=0, then the surface contains a segment of curve2 curve.

0.5.18. MbCoverSurface Coons Surface

MbCoverSurface class is declared in surf_cover_ surface.h file.

377



MbCoverSurface Coons surface is described by MbCurve3D* curve0, curvel, curve2, curve3 curves,
four MbCartPoint3D vertex[4] points, four pairs of parameter limits for corresponding curves (fOmin, tO0max,
tlmin, tlmax, 2min, 2max, 3min, t3max), uclosed periodicity sign for surface first parameter, vclosed
periodicity sign for surface second parameter, poleUMin sign indicating the presence of surface pole for the
initial value of the first parameter, poleUMax sign indicating the presence of surface pole for the terminal
value of the first parameter, poleVMin sign indicating the presence of surface pole for the initial value of the
second parameter, poleVMax sign indicating the presence of surface pole for the terminal value of the second
parameter. There are some other surface parameters that are not mandatory, they are used to speed up surface
methods.

Surface first parameter (u) takes values in 0<u<1 range. If curve0 and curve2 curves are periodic, then
the surface is periodic by the first parameter.

Surface second parameter (v) takes values in 0<v<1 range. If curvel and curve3 curves are periodic, then
the surface is periodic by the second parameter.

curve0, curvel, curve2, curve3 adjacent curves should have intersection points or crossing points.
tOmin, Omax, tlmin, t\max, 2min, 2max, t3min, t3max curve parameters are calculated using intersection
points or crossing points of curves; these parameters define working segments of curves and vertex points
[4]. The directions of curves are of no importance for the surface.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = (1-v) (curve0(z0) — (1—u) vertex[0]) +
+u (curvel(tl) — (1-v) vertex[1]) +
+v  (curve2(2)—u  vertex[2]) +
+ (1-u) (curve3(£3) — v vertex|[3]) vector function,

where w0=1-u, w1=0.5(u—uv), w2=0.5(u+uv) are barycentric coordinates of the surface, 0=(1—
u)tOmin+utOmax is the parameter of curveO curve, t1=(1-v)tlmin+vtlmax is the parameter of curvel
curve, 2=(1-u)2min+ut2max is the parameter of curve2 curve, 3=(1-v)3min+vt3max is the parameter of
curve3 curve. Coons surface based on four crossing curves is shown in Figure O.5.18.1.
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Figure 0.5.18.1.

Surface form depends on the shape of the curves. If adjacent curves intersect in vertex[4] points, then the
surface contains the following curve segments: if #=0, then the surface contains a segment of curve3 curve,
if v=0, then the surface contains a segment of curve0 curve, if #=1, then the surface contains a segment of
curvel, if v=1, then surface contains a segment of curve2 curve.
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0.5.19. MbCoonsPatchSurface Coons Surface

MbCoonsPatchSurface class is declared in surf coons_surface.h file.

MbCoonsPatchSurface bicubic Coons surface is constructed similar to MbCoverSurfaceCoons surface
and it has additional conditions for radius vector at the edges. MbCoonsPatchSurface bicubic Coons surface
is described by MbCurve3D* curve(, curvel, curve2, curve3 curves, curveQV derivative of surface radius
vector along curve0 curve by surface second parameter, curvelU derivative of surface radius vector along
curvel curve by surface first parameter, curve2V derivative of surface radius vector along curve2 curve by
surface second parameter, curve3U derivative of surface radius vector along curve3 curve by surface first
parameter, four vertex[4] corner points, four vertexU[4] derivatives of the surface by surface first parameter
in the corners, four vertexV[4] derivatives of the surface by surface second parameter in the corners, four
vertexUV[4] mixed derivatives by surface first and second parameters in the corners, four pairs of parameter
limits for the corresponding curves (fOmin, tOmax, tlmin, tlmax, 2min, 2max, 3min, 3max), uclosed
periodicity sign for surface first parameter, vclosed periodicity sign for surface second parameter. There are
some other surface parameters that are not mandatory, they are used to speed up surface methods.

Surface first parameter () takes values in 0<u<1 range. The surface can be periodic by the first parameter
if curve(, curve2, curveV0, curveV2 curves are periodic, and curveU1 and curveU3 curves coincide.

Surface second parameter (v) takes values in 0<v<I range. Surface can be periodic by the first parameter
if curvel, curve3, curveUl and curveU3 curves are periodic, and curveV0 and curve and V2 curves
coincide.

curveO, curvel, curve2, curve3 adjacent curves should have intersection or crossing points. Omin,
tOmax, tlmin, t\max, 2min, 2max, t3min, 3max curve parameters are calculated based on intersection
points or crossing points of the curves; these parameters define working segments of curves: vertex[4],
vertexU[4], vertexV[4], vertexUV[4] points. Directions of the curves are of no importance for the surface.
However, parametrization of the following pairs of curves should coincide: curve0 and curveVO0, curve2
and curveV2, curvel and curveU]l, curve3 and curveU3.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s radius vector of the surface is described
by a vector function that is discussed in Geometric Modeling book authored by N. N. Golovanov. Bicubic
Coons surface is constructed based on calculated data, it is used to construct mates and patches with mate
conditions at the edges. Bicubic Coons surface is shown in Figure O.5.19.1.

Figure O.5.19.1.
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Surface form depends on the shape of curves and derivatives. If adjacent curves intersect in vertex[4]
points then the surface contains the following curve segments: if =0 then the surface contains a segment of
curve3 curve, if v=0 then the surface contains a segment of curve0 curve, if u=1 then the surface contains a
segment of curvel, if v=1 then surface contains a segment of curve2 curve.

0.5.20. MbMeshSurface Surface Based on a Network of Curves

MbMeshSurface class is declared in surf mesh_surface.h file.

MbMeshSurface surface based on a network of curves is described by RPArray<MbCurve3D>uCurves
set of curves, RPArray<MbCurve3D>vCurves set of curves, uParams set of values of surface first
parameter, vParams set of values of surface second parameter, umin and umax limits of surface first
parameter, vmin and vmax limits of surface second parameter, signs indicating the presence of surface poles
in poleUMin, poleUMax limits of surface first parameter, signs indicating the presence of surface poles in
poleVMin, poleVMax limits of surface second parameter, uclosed periodicity sign for surface first parameter,
velosed periodicity sign for surface second parameter, type0 surface mating type in the edge corresponding to
second parameter vmin , typel surface mating type in the edge corresponding to first parameter umin, type2
surface mating type in the edge corresponding to second parameter vmax,type3 surface mating type in the
edge corresponding to first parameter umax. There are some other surface parameters that are not mandatory,
they are used to speed up surface methods.

The number of elements in vCurves curve set and uParams set of values of surface first parameter are
aligned so that vCurves[j] curve points correspond to uParams[j] parameter. Surface first parameter (u)
takes values in uParams|[0]<usuParams[uParams MaxIndex()] range. If all uCurves curves are periodico
then the surface is periodic by the first parameter.

The number of elements in uCurves curve set and vParams set of values of surface second parameter are
aligned so that uCurves[i] curve points match vParams[i] parameter. Surface second parameter (v) takes
values in vParams[0]<v<vParams[vParams MaxIndex()] range. If all vCurves curves are periodic then the
surface is periodic by the second parameter.

Each uCurves[i] curve should have intersection points or crossing points with each vCurves[/] curve.
Adjacent curves in uCurves set should not have opposite directions. Adjacent curves in vCurves set also
should not have opposite directions.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by a
vector function that is described in Geometric Modeling book, the author of the book is N.N. Golovanov. A
surface based on a network of curves is shown in Figure 0.5.20.1.
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Figure O.5.20.1.

Surface form depends on the shape of curves, their relative position and the values of parameters in
uParams and vParams sets. If each uCurves[i] curve intersects with each vCurves|[;] curve, then the surface
contains vCurves[j] curves if parameters u=uParams[j], and it contains uCurves[i] curves if parameters
v=vParams|[i].

0.5.21. MbJoinSurface Joint Surface

MbloinSurface class is declared in surf joint surface.h file.

MbloinSurface joint surface is described by RPArray<MbCurve3D>curves set of curves, knots nodal
vector, degree spline order, umin and umax limits of surface first parameter, closedU periodicity sign of
surface first parameter, closedV periodicity sign of the surface second parameter, a sign indicating the
presence of surface poles at isPoleUmin, isPoleUmax limits of surface first parameter, a sign indicating the
presence of surface poles at isPoleUmin, isPoleUmax limits of surface second parameter.

curves curves are aligned with each other: they have the same direction and parameter range. Surface first
parameter (u) coincides with curves parameter of curves that is a common parameter for them. Surface first
parameter takes values in umin<u<umax range that corresponds to curves curves parameter range. If all
curves curves are periodic, then the surface is periodic by the first parameter. Let knots nodal vector contain
knotsCount elements, and let curves set have curvesCount curves. The following equation holds for the
number of elements in these sets: curves Count+degree=knotsCount.

Surface second parameter (vtakes values in vmin<v<vmax range, where vmin=knots[degree—1],
vmax=knots[knotsCount—degree]. The surface can't be periodic by the second parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by
vector function
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where Nj¢¢(v) are B-splains of degree order for jth curves[j] curve. A joint surface is shown in Figure
0.5.21.1.
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Figure O.5.21.1.

Each s(const,v) curve with fixed first parameter (u=const) is a NURBS curve of degree order constructed
based on curves[i](const) points.

0.5.22. MbSplineSurface NURBS Surface

MbSplineSurface class is declared in surf spline surface.h file.

MbSplineSurface  NURBS (NonUniform Rational B-Spline surface) surface is described by
SArray<MbCartPoint3D>points[{][j/], =0,1,...,vcount—1, j=0,1,...,ucount-1 control points that are
conventionally located in the nodes of a rectangular table having ucount columns and vcount rows, weights
of control pints defined in weight[i][j] table, udegree order of B-splines along surface first parameter,
vdegree degree of B-splines along surface second parameter, uknots nodal vector along the first parameter,
vknots nodal vector along the second parameter, uclosed and vclosed surface periodicity signs for the first
and for the second parameters. There are some other surface parameters that are not mandatory, they are used
to speed up surface methods.

The order of B-splines along surface parameters coincides with the order of divided difference that was
used to calculate corresponding B-splines. uknots and vknots nodal vectors are non-decreasing sequences of
real numbers that define definition area of surface parameter and the form of the surface. Let uknots nodal
vector contain uknotsCount elements, and the number of points in each row of rectangular table be equal to
ucount. For a NURBS surface that is non-periodic by the first parameter, the following equation holds for the
numbers of elements in the sets: ucount+degree=uknotsCount. For a periodic NURBS surface the following
equation holds for the numbers of elements in the sets: knotsCount+2degree—1=knotsCount.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by
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where N;%¢¢(v) and N/%€¢(y) are B--splains. In Fig. 0.5.22.1 you can see segments that connect adjacent
points[i][/] control points.

points[3][4]

points[0][0]

Figure 0.5.22.1.

Figure 0.5.22.1 demonstrates control points that are conventionally located in the nodes of a rectangular
table. NURBS surface that is constructed based on the same control points is shown in Figure 0.5.22.2.
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Figure 0.5.22.2.

s(const,v) and s(u,const) curves on the surface with u=const or v=const parameters are B-curves having
udegree order and vdegree order respectively. udegree is surface degree by the first parameter; vdegree is
surface degree by the second parameter. Parameter variation area of non-periodic NURBS surface is a
rectangle: uknots|udegree—1|<usuknots|ucount], vknots|vdegree—1]<v<vknots[vcount].

A surface may be periodic both by the first parameter and by the second parameter. uknots and vknots
nodal vectors for periodically closed surface have udegree—1 and vdegree—1 more elements, respectively. If
NURBS surface is periodic by both parameters then parameter variation area is a rectangle: uknots[udegree—
1]uzuknots[ucounttudegree—1], vknots[vdegree—11<v<vknots[vcount+vdegree—1].

Every surface can construct its NURBS copy using NurbsSurface( const MbNurbsParameters &
uParam, const MbNurbsParameters & vParam ) virtual method.

0.5.23. MbOffsetSurface Equidistant Surface

MbOffsetSurface class is declared in surf offset surface.h file.

MbOffsetSurface equidistant surface is described by MbSurface* basisSurface base surface, distance
offset along the normal to the base suface, uOmin, uOmax limits of base surface first parameter, vOmin, vOmax
limits of base surface second parameter, uOclosed, vOclosed base surface periodicity signs, dumin, dumax
increments of the limits of base surface first parameter, dvmin, dvmax increments of the limits of base
surface second parameter. There are some other surface parameters that are not mandatory, they are used to
speed up surface methods.

Point radius vector of equidistant surface is calculated as follows. The point of the base surface and the
normal in this point are calculated for a preset parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

r(u,v) = basisSurface(u,v) + normal(u,v) distance vector function,

where normal(u,v) is normal to the surface in the preset point. An equidistant surface and its base surface are
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shown in Figure 0.5.23.1.

basisSurface

Figure O.5.23.1.

Parameter variation area of equidistant surface and parameter variation area of its base surface may differ.
Parameter variation area of the first parameter of equidistant surface is determined by the following
inequalities: uOmin+dumin<us<uOmax+dumax. Parameter variation area of the second parameter of
equidistant surface is determined by the following inequalities: vOmintdvmin<v<vOmax+dvmax. An

equidistant surface with a negative offset and expanded parameter definition area and its base surface are
shown in Figure 0.5.23.2.

basisSurface

distance < ()

Figure O0.5.23.2.

An equidistant surface can't use other equidistant surface as a base surface; rather base surface of the
other equidistant surface should be used subject to corresponding recalculation of offset value.

Each surface can construct an equidistant surface using Offset( double distance, bool sense ) virtual
method.

0.5.24. MbChamferSurface Chamfer Surface

MbChamferSurface class is declared in surf chamfer surface.h file.
MbChamferSurface chamfer surface belongs to MbSmoothSurface group of mating surfaces. Chamfer
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surface is described by MbSurfaceCurve* curvel curve on the first mated surface, MbSurfaceCurve*
curve2 curve on the second mated surface, form chamfer construction method, distancel and distance2
chamfer sides, umin and umax parameter limits curvel and curve2 curve parameters, vmin and vmax limits
of surface first parameter, uclosed periodicity sign of surface first parameter, poleMin sign indicating a
surface pole for the initial value of the first parameter, poleMax sign indicating a surface pole for the end
value of the first parameter.

curvel and curve2 are aligned with each other, they have the same parameter range. u is the first surface
parameter that coincides with parameter of curvel and curve2 curves that is common for them. The first
surface parameter takes values in umin<u<umax range that corresponds to parameter definition area of
curvel and curve?2 curves. If curvel and curve2 curves are periodic, then the surface is periodic by the first
parameter.

Surface second parameter (v) takes values in vmin<v<vmax range. v=vmin corresponds to a point in
curvel curve, v=vmax corresponds to a point at curve2 curve. The surface can't be periodic by the second
parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

s(u,v) = curvel(u) (1-w) + curve2(u) w vector function,

v — vmin ) o
where W = ———————————_ A chamfer surface is shown in Figure O.5.24.1.
vmax — vmin

Figure 0.5.24.1.

Curves at s(const,v) surface with u=const parameters are straight line segments. A surface may have a
pole at u=umin and u=umax if corresponding edges of curvel and curve2 curves coincide.

0.5.25. MbFilletSurface Fillet Surface

MbFilletSurface class is declared in surf fillet surface.h file.

MbFilletSurface fillet surface belongs to MbSmoothSurface group of mating surfaces. MbFilletSurface
fillet surface is described by MbSurfaceCurve* curvel curve on first mated surface, MbSurfaceCurve*
curve2 curve on second mated surface, MbCurve3D* curve0 curve, MbFunction* weightsO weight function
of curve0 curve, form filleting method, distancel and distance?2 filleting radii, conic shape coefticient, umin
and umax limits of curvel, curve2, curve0 curve parameters and weightsO functions, vmin and vmax limits
of surface second parameter, uclosed periodicity sign of surface first parameter, poleMin sign indicating a
surface pole at the initial value of the first parameter, poleMax sign indicating a surface pole at the terminal
value of the first parameter, even sign indicating uniform surface parameterization for the second parameter,
equable sign indicating smooth mating of the surface with mated surfaces, byCurvel sign indicating an edge
along curve2 orcurvel curve (equable=false). There are some other surface parameters that are not
mandatory, they are used to speed up surface methods.
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curvel, curve2, curve0 curves and weightsO function are aligned with each other and have the same
parameter range. u is the first surface parameter that coincides with curvel, curve2, curve0 curve parameter
and weightsO function that is common for them. Surface first parameter takes values in umin<u<umax range
that corresponds to parameter range of curvel, curve2, curve0 curves and weightsO function. If curvel,
curve2, curve( curves and weightsO function are periodic, then the surface is periodic by the first parameter.

Surface second parameter (v) takes values in vmin<v<vmax range. v=vmin corresponds to a point in
curvel curve, v=vmax corresponds to a point at curve2 curve. The surface can't be periodic by the second
parameter.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by

(1 - v)zcurvei(u) + Zt(l - v)weight()(u)curve O(H) + vzcurveZ(u)
(1-v)% + 2v(1 - v)weightO(w) + v*

s(u,v) =

Each s(const,v) curve with fixed surface first parameter (u=const) is third-order NURBS curve
constructed based on curvel(u), curveO(u), curve2(u) points; the weights of the outermost points of this
NURBS curve are 1, the weight of curveO(x) midpoint is equal to weightsO(u). If conic= ARC , then
weightsO(x) function is calculated from condition that all s(comst,v) curves are circular arcs. If
conic# ARC , then weightsO function is a constant and it is equal to conic shape coefficient. A fillet surface
is shown in Figure O.5.25.1.

form = st Fillet

distancel = distance?

distance?

distancel

curvel

Figure 0.5.25.1.

In general case, this surface smoothly mates with the surfaces where curvel(u) and curve2(u) curves are
located. In this case equable parameter is "true". If equable=false, then for curvel or curve2 mating is
smooth, and the other curve is face edge. If byCurvel=true, then mating of curvel curve is smooth,
otherwise this is true for curve2. A fillet surface with kept edge is shown in Figure 0.5.25.2.
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byCurevel = false

equable = fale

distancel = distance?

Figure 0.5.25.2.

If distancel and distance? filleting radii are not equal, then fillet surface in s(const,v) section with
u=const parameters circumscribes an ellipse. An elliptical fillet surface is shown in Figure 0.5.25.3.
form = st Fillet

distancel + distance?
distance?

Figure 0.5.25.3.

In general case, filleting method is form=st Fillet. If form=st_Span, then distancel=distance2 and they
are equal to the distance between curvel and curve2, and surface filleting radius is variable. A fillet surface
with preserved distance between reference curves is shown in Figure 0.5.25.4.
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form = st Span

curvel

distancel = distance2 = span

Figure O0.5.25.4.

Curves of s(const,v) surface with u=const parameters are conic sections, their shape depends on conic
parameter. If conic= ARC =0 then the curves of s(const,v) surface are circular arcs. If conic=0.5 then the
curves of s(const,v) surface are parabolic arcs. If 0.05<conic<0.5 then the curves of s(const,v) surface are
elliptical arcs. If 0.5<conic<0.95 then the curves of s(const,v) surface are hyperbolic arcs. A surface may
have a pole at u=umin and at u=umax if the corresponding edges of curve0, curvel and curve2 curves
coincide.

0.5.26. MbChannelSurface Fillet Surface

MbChannelSurface class is declared in surf channel surface.h file.

MbChannelSurface fillet surface is an inheritor of MbFilletSurface fillet surface. MbChannelSurface fillet
surface is described by MbSurfaceCurve* curvel curve on the first mated surface, MbSurfaceCurve*
curve2 curve on the second mated surface, MbCurve3D* curve0 curve, MbFunction* weightsO weight
function of curve0 curve, MbFunction* function radius change function, form filleting method, distancel
and distance? filleting radii, conic shape coefficient, umin and umax limits of curvel, curve2, curve0 curve
parameters and weightsO and function functions, vmin and vmax limits for surface second parameter,
uclosed periodicity sign for surface first parameter, poleMin sign indicating a surface pole at the initial value
of the first parameter, poleMax sign indicating a surface pole at the end value of the first parameter. There are
some other parameters of the surface that are not mandatory, they are used to speed up the methods.

curvel, curve2, curve( curves and weights(O, function functions are aligned with each other and have
the same parameter range. u is the first surface parameter, it coincides with parameter of curvel, curve2,
curve0 curves andweightsO and function functions that is common for them. The first surface parameter
takes values in umin<u<umax range that corresponds to the range of curvel, curve2, curve0 curves and
weights0 and function functions. If curvel, curve2, curve( curves and weightsO and function functions are
periodic then the surface may be is periodic by the first parameter.

Surface second parameter (v) takes values in vmin<v<vmax range. v=vmin corresponds to a point in
curvel curve, v=vmax corresponds to a point at curve2 curve. The surface can't be periodic by the second
parameter.

In PointOn (double u, double v, MbCartPoint3D & s) method, s surface radius vector is described by
vector function

389



(1—v) curvel(u) + 2¢(1 — vIweightO(u)curveO(u) + v curve2(u)
(1=v)" +2v(1 —v)weightO(u) +v*

s(u,v) =

Each s(const,v) curve with fixed surface first parameter (uz=const) is third-order NURBS curve
constructed based on curvel(u), curveO(u), curve2(u) points; the weights of the outermost points of this
NURBS curve are 1, the weight of curveO(z) mid point is equal to weightsO(u). If surface first parameter is
modified, then filleting radii are changed as follows: RI1(u)=distancel-function(z) and
R2(u)=distance2 function(u). If conic=_ARC , then weightsO(«) function is calculated from condition that
all s(const,v) curves are circular arcs. If conic# ARC , then weightsO function is a constant and it is equal to
conic shape coefficient. A fillet surface with variable radius is shown in Figure O.5.26.1.

radius1(u) = radius2(u)

Figure 0.5.26.1.

A fillet surface with variable radius is smoothly mated with surfaces, where curvel(x) and curve2(u
curves are found; in this case equable=true and form=st Fillet.

Curves of s(const,v) surface with u=const parameters are conic sections, their shape depends on conic
parameter. If conic= ARC_=0, then the curves of s(const,v) surface are circular arcs. If conic=0.5, then the
curves of s(const,v) surface are parabolic arcs. If 0.05<conic<0.5, then the curves of s(const,v) surface are
elliptical arcs. If 0.5<conic<0.95, then the curves of s(const,v) surface are hyperbolic arcs. A surface may
have a pole at u=umin and at u=umax if the corresponding edges of curve0, curvel and curve2 curves
coincide.

0.5.27. MbCurveBoundedSurface Surface with Arbitrary Borders

MbCurveBoundedSurface class is declared in surf curve bounded surface.h file.

MbCurveBoundedSurface surface with arbitrary borders is described by MbSurface* basisSurface base
surface, RPArray<MbContourOnSurface>curves set of boundary curves (contours on the surface) as well as
by umin, umax, vmin and vmax parameter limits that define a dimensional rectangle of parameter definition
area.

MbCurveBoundedSurface surface has curved edges and can have arbitrary cutouts inside. Surface
boundaries describe contours on the surface of curves container.

In PointOn( double u, double v, MbCartPoint3D & s ) method, s surface radius vector is described by
vector function
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s(u,v) = basisSurface(u,v) vector function, u,veQ,

where Q is parameter definition area represented by a connected two-dimensional area. Radius vector of the
surface bounded by the contours is described according to the same law as basisSurface surface; but
parameter definition area is different. A base surface and contours on it are shown in Figure O.5.27.1.

basisSurface

Figure O.5.27.1

In general case, parameter definition area of Q surface that is bounded by surface contours can go beyond
basisSurface parameter definition area. Outside of basisSurface surface parameter definition area, r(u,v)
radius vector is calculated using PointOn(u,v,s) method according to basisSurface surface extension rules.
A surface with an arbitrary border is shown in Fig. 0.5.27.2.
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Figure O0.5.27.2.

Each curve in curves container describes one closed surface border. Each curve in curves container is a
contour on MbContourOnSurface surface. Each contour on the surface is described by surface that coincides
with basisSurface, and contour 2D contour. contour is a closed 2D composite curve. confour contour
segments may by any MbCurve 2D curves, except for MbContour composite curves. In general case, contour
derivatives have discontinuities by length and direction in the points where the segments join. Two-
dimensional contours describe borders of Q definition area of MbCurveBoundedSurface surface. Boundary
contours of curves container meet the following conditions: they do not intersect themselves and each other,
the first curves[0] contour of the container describes the external border and it contains all other contours
that describe internal cutouts in the surface. Internal contours can't be nested. For quick location of a 2D
point relative to the surface parameter definition area, boundary contours are oriented so that if you move
along the border, then the surface is always on the left side if we look opposite to surface normal. So,
external contour is oriented so that movement along the border is executed counter-clockwise when gaze
direction is opposite to its normal, and inner contours are oriented in the opposite direction.

MbCurveBoundedSurface surface with arbitrary borders can't be used as basisSurface base surface. If
you need to construct a surface with arbitrary borders based on other surface with arbitrary borders, then you
should use a base surface of the latter.
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0.6. SPECIAL OBJECTS

Scalar functions that are similar to curves in one-dimensional space are special objects. Special objects
are used for specific purposes, for example, in order to describe the change of fillet surface radius as a
function of one surface parameter. In two-dimensional space, multiline and area are special objects. Contour
with breaks was created to work with multilines based on a two-dimensional contour. In three-dimensional
space, special objects describe base points of other objects, threads, extension lines, unevenness and other
symbols.

0.6.1. MbFunction Function

MbFunction class is declared in function.h file.
MbFunction is an abstract class, it is an inheritor of MbRefltem and TapeBase classes, see Figure O.6.1.1.

[MbReﬂtem] [TapeBaseﬂ

Y A 1
MbFunction

i

Fig. 0.6.1.1.

In C3D geometric kernel, the following scalar functions are realized that are inheritors of MbFunction class:
MbConstFunction — constant function
MbLineFunction — linear function
MbCubicFunction — cubic Hermite function,
MbCubicSplineFunction — cubic spline function.
MbCharacterFunction is an analytic function.
MbFunction is

Sfunction(t) = f{{) scalar function

of ¢ scalar parameter that takes values in [#min, fmax] range. Function parameter range is [fmin, fmax] range in
one-dimensional space. f{¢) should be one-valued continuous function.

tmin and fmax limit values of parameter range are received using double GetTMin() and double GetTMax()
function methods respectively.

The function is referred as periodic if there is p>0 such that f{t+kp)=f(¢), where k is an integer. IsClosed()
method returns "true" for periodic function. double GetPeriod() method for periodic function or method of
for function that can be extended and made periodic returns period 9p). Periodic function parameter range is
always limited by one period.

Double Value( double & ¢ ) is the main method of the function.

This method returns function value for specified parameter (¢).

double FirstDer( double & ¢),

double SecondDer( double & ¢),

double ThirdDer( double & ¢ ) methods

return respectively the first, second and third function derivatives for specified ¢ parameter. These methods
adjust function parameter if it goes beyond the range. If ¢ parameter goes beyond [Zmin, fmax] range, then non-
periodic function moves ¢ parameter to the nearest fmin Or fmax limit, and the periodic function adds or
subtracts the required number of periods.

double _Value( double ¢)

method returns function value for specified ¢ parameter both inside and outside the parameter range. In the
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general case, a non-periodic function is extended outside of the parameter range along the tangent in the end
point. Analytic functions are exceptions. Periodic functions are extended cyclically outside of the parameter
range.
double FirstDer( double ¢),
double _SecondDer( double ¢ ),
double ThirdDer( double ¢)
methods return respectively the first, second and third derivatives of function for specified ¢ parameter both
inside and outside of the parameter range.

The functions reload the following methods:
the methods that permit to copy, check objects for coincidence, check whether it's possible to make objects
coinciding and make them coinciding:
MbFunction & Duplicate(),
bool IsSame( const MbFunction & item ),
bool IsSimilar( const MbFunction & item ),
bool SetEqual( const MbFunction & item ),
the method that returns a type from function enumeration,
MbeFunctionType IsA(),
the methods that provide access to object internal data and to edit them,
MbProperty & CreateProperty( MbePrompt name ),
void GetProperties( MbProperties & properties ),
void SetProperties( MbProperties & properties ).

As a rule, all functions have no kinks. MbAnaliticalFunction function defined by user should be
continuous and it should not have critical points.

0.6.2. MbConstFunction Constant Function

MbConctFunction class is declared in func_const_function.h file.
MbConctFunction constant function is described by one value of value function.
double Value( double & ¢) method uses

A#) = value function.

Function parameter range is within 0<¢<1 range. The function can't be periodic.

0.6.3. MbLineFunction Linear Function

MbLineFunction class is declared in func_line function.h file.
MbLineFunction linear function is described by two function limit values (valuel, value2) and parameter
limit values tmin, tmax.
double Value( double & ¢) method uses
A8 = valuel (1-) + value2 t function.

Function parameter range is within tmin<t<tmax range. The function can't be periodic.

0.6.4. MbCubicFunction Cubic Hermite Function

MbCubicFunction class is declared in cur_cubic_function.h file.
MbCubicFunction cubic Hermite function is described by valuelist set of control points, firctList set of
function derivatives in control points, ¢List set of function parameter values in control points and closed
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function periodicity sign. There are some other function parameters that are not mandatory, they are used to
speed up function methods.

If tList[i], i=0,1,...,splinesCount, where splinesCount=tList. MaxIndex(), then MbCubicFunction cubic
Hermite function goes through valueList[i] control point and has firctList[i] derivative in it. The function is
constructed on base of splinesCount smoothly joined third-order Hermite splines. Each Hermite cubic spline
describes a function segment between two neighboring control points. Each Hermite cubic spline is defined
by two extreme points and two curve derivatives in these points.

To calculate the function, we first use the value of # parameter to find the number of the working segment
(the number of Hermite cubic spline) i from tList[i]<t<tList[i+1]. The function is calculated for the found
working segment using its w local parameter that is determined from zList[i] and tList[i+1].

double Value( double & ¢ ) method uses

f(@®) = (1 -3w* + 2w”)valueList[i] + (3w* + 2w’ )valueList [i + 1] +
+ ((w - 2w* + w)valueList[i] + (- w? + w®)valueList[i + 1])(tList[i + 1] - tList[i]) function,
t — tList[{] ) L . . . .
where w = —— —— is the local parameter of ¢List[i|<t<tList[i+1] working segment. Cubic Hermite
tList[i + 1] - tList[i]
function is shown in Figure O0.6.4.1.

f( valueList[3]

valueList[1] valueList[n]

valuelList[0]

valueList[n-1]

t
fmin max

Fig. 0.6.4.1.

Function parameter range is within tmin<t<tmax range, where tmin=tList[0], tmax=tList[splinesCount].
The function may be periodic.

Function shape depends on location of control points, function derivatives in control points, as well as on
tList set of parameter values in control points. When a function is constructed using control points only,
firctList[i] derivatives are calculated by constructing a parabola that passes through three adjacent points
valueList[i—1], valuelList[i], valueList[i+1] for tList[i-1], tList[i], tList[i+1], then parabola derivative is
calculated in the midpoint.

0.6.5. MbCubicSplineFunction Cubic Spline Function

MbCubicSplineFunction class is declared in cur_cubic_spline_function.h file.

MbCubicSplineFunction cubic spline function is described by valueList set of control points, secondList
set of function second derivatives in control points, ¢List set of function parameter values in control points
and closed function periodicity sign. There are some other function parameters that are not mandatory, they
are used to speed up function methods.

If tList|i], i=0,1,...,splinesCount, where splinesCount=tList. MaxIndex(), then cubic function goes through
valueList[i] control point and has secondList[i] second derivative in it.

To calculate the function, we first use ¢ parameter value to find i number of the working segment from
tList[i]<t<tList[i+1]. The function is calculated for the found working segment using its w local parameter
that is determined from tLis¢[i] and tList[i+]1].
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double Value( double & ¢ ) method uses

r(t) = (1 - w)valueList[{] + wvalueList [{ + 1] +
(tList[i + 1] - tList[i])*

+((-2w+ 3w? - WS)valueList[i] +(-w+ WS)valueList [i+1]) 7
)

. t —tList[i . o o . .
function,where w = —— L4 — is the local parameter of ¢List[i]<t<tList[i+1] working segment. Cubic
tList[i + 1] - tList[{]

spline function is shown in Figure O.6.5.1.

0!

valueList|1] valueList|[n]

valueList[0]

valueList[n-1]

t
tmin max

Fig. 0.6.5.1.

Function parameter range is within tmin<t<tmax range, where tmin=tList[0], tmax=tList[splinesCount].
The function may be periodic.

Function shape depends on location of control points and on ¢List set of parameter values in control
points. When the function is constructed using the control points, secondList[i] derivatives are calculated
from the fact that the second derivatives vary linearly between the control points.

0.6.6. MbCharacterFunction Character Function

MbCharacterFunction class is declared in func analytical function.h file.

MdCharacterFunction character function is described by function string expression, action tree used to
calculate the expression, fmin, tmax parameter limits and sense direction. There are some other function
parameters that are not mandatory, they are used to speed up function methods.

Character function permits to describe any function of ¢ parameter as a string expression that contains
analytical functions and arithmetic operations.

double Value( double & ¢ ) method uses an action tree to calculate string expression values.

Function parameter range is within fmin<t<tmax range. The function may be periodic.

0.6.7. MbMultiline Multiline

MbMultiline class is declared in multiline.h file.
MbMultiline multiline is an inheritor of MbPlaneltem class, see Figure 0.6.7.1.
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[MbReﬂtem] [TapeBase]

———
MbPlaneltem B ?

i

A

[ MbMultiline ji

Fig. 0.6.7.1.

A multiline is described by basisCurve base contour, vertices set of vertices, equidRadii set of radii,
begTipParams multiline start edge parameters, endTipParams multiline end edge parameters, processClosed
periodicity processing sign, isTransparent transparency sign, curves set of curves, tipCurves set of end edges
in multiline vertices, begTipCurves end edge in multiline initial vertex, endTipCurves end edge in multiline
end vertex.

A multiline is a contour that has thickness. Contour thickness is variable. Contour edges and connection
points of contour segments may have various forms.

A multiline is shown in Figure 0.6.7.2.

tipCurves

(ShearTyp
tipCurves

(ShearType)

tipCurves
(FilletType)

begTipCurves
(LinearType)

endTipCurves
(ArcType)

Fig. 0.6.7.2.

A multiline is used to exchange data with other systems.

0.6.8. MbContourWithBreaks Two-Dimensional Contour with Breaks

MbContourWithBreaks class is declared in cur_contour with breaks.h file.
Two-dimensional contour with breaks is an inheritor of MbContour contour, see Figure O.6.8.1.
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[NIbReﬂtem] [TapeBase]

3

[MbPlaneItem

(o jJ

[ MbContour

»,

[MbContour\VithBreaks

Fig. 0.6.8.1.

Two-dimensional contour with breaks is described by segments set of sequentially joined curves, closed
curve periodicity sign, breaks, visibleContours set of contour visible sections , and baseSegNumbers set of
contour segment numbers used to define fixed break points.

A contour with breaks is shown in Figure O.6.8.2.

breaks|0]

4%[0] -

segments|1]

</

breaks|2]
segments|2] ‘*“»‘::.._...ﬁ\

4

segments[3]

Fig. 0.6.8.2.

A two-dimensional contour shouldn't be used as a segment of other 2D contour segments with breaks.
Two-dimensional contour with breaks is used to construct multilines only.

0.6.9. MbRegion Region

MbRegion class is declared in region.h file.
MbRegion region is an inheritor of MbPlaneltem class, see Figure 0.6.9.1.
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[MbReﬂtem] [TapeBase]

i

MbPlaneltem
[ MbRegion ji

A region is described by contours set of contours. Region contours are periodic and they don't cross each
other and themselves. One contour in a set is an external contour, and all other contours are located inside it,
they are internal contours. The first contour in contours set is always external.

A region is an interconnected set of points in 2D space, its boundaries are described by 2D periodic
contours. Contours of the region are oriented so that when one moves along any contour, circumscribed set
of points is located to the left from the contour. That is, external contour of the region is oriented counter-
clockwise, and internal contours are oriented clockwise. A region is shown in Figure 0.6.9.2.

Fig. 0.6.9.1.

contours|0]

Fig. 0.6.9.2.

Regions are used to describe 2D interconnected areas. Boolean operations can be performed on regions.

0.6.10. MbLegend Auxiliary Geometric Object

MbLegend class is declared in legend.h file.
MbLegend auxiliary geometric object is an inheritor of MbSpaceltem class, see Figure 0.6.10.1.

[MbReﬂtemj [TapeBase]

—

[MbSpaceItem

\
MbLegend
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Fig. 0.6.10.1.

An auxiliary geometric object is an abstract class. The following topological objects are inhertors of
MbLegend class in C3D geometric kernel:
MbMarker — a point and two orthonormal vectors,
MbThread — a thread,
MbPointsSymbol— a symbol in base points,
MbRough— surface finish symbol,
MbLeader— a leader line.

Auxiliary objects are used for various purposes, however, all of them all interact with curves, surfaces and
objects of the geometric model.

Auxiliary objects reload the following methods of 3D geometrical object:
the methods that serve geometrical object transformation,
Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
the methods that permit to copy, check objects for coincidence, check whether it's possible to make objects
coinciding and make them coinciding:
MbSpaceltem& Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceltem & item ),
bool IsSimilar( const MbSpaceltem & item ),
bool SetEqual( const MbSpaceltem & item ),
the methods that return a type from enumeration of geometric objects,
MbeSpaceType IsA(),
MbeSpaceType Type(),
MbeSpaceType Family(),
the methods that provide access to object internal data and to edit them,
MbProperty & CreateProperty( MbePrompt name ),
GetProperties( MbProperties & properties ),
SetProperties( MbProperties & properties ),
the method that fills up a polygonal copy of the geometrical object,
CalculateWire( double sag, MbMesh & mesh ).

0.6.11. MbMarker Marker

MbMarker class is declared in marker.h file.

MbMarker auxiliary object is described by origin point and two orthogonal vectors (axisZ, axisX).

A marker is used to set restrictions on geometric objects in 3D space. A marker is a representative of the
geometric object, it can replace a 3D point, a line, a plane, local coordinate system and other objects during
work with geometric constraints.

0.6.12. MbThread Thread Graphic Symbol

MbThread class is declared in mb_thread.h file.

MbThread thread graphic symbol is described by place thread local coordinate system, radObj initial
radius of thread in the surface, radThr initial radius of thread in the body, length thread length, angle thread
cone angle, name thread name, and bodys set of bodies. There are some other parameters of this object that
are not mandatory and that are used to speed up object methods.

The axis of a threaded joint goes along place.axisZ axis. A name is used to identify thread graphic
symbol among flat projections of body faces from solids set. Thread graphic symbol is shown in Figure
0.6.12.1.
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Fig. 0.6.12.1.

Thread graphic symbol describes a threaded joint element of the geometric model, it is used to construct
flat projections of threaded joints.

0.6.13. MbPointsSymbol Symbol

MbPointsSymbol class is declared in mb_symbol.h file.

MbPointsSymbol symbol is an inheritor of MbSymbol class. MbPointsSymbol is described by points set
of identifiers and steps parameters that contain data on complex cut lines.

The object contains data on base points of the symbols associated with elements of the geometric model.

The object is used to construct flat projections of symbols, for which it is sufficient to know the location
of the base points. It defines the base points of symbols in the elements of the geometric model.

0.6.14. MbRough Surface Finish Symbol

MbRough surface finish symbol.

MbRough class is declared in mb_rough.h file.

MbRough surface finish symbol is an inheritor of MbPointsSymbol class. Surface finish symbol is
described by points set of 3D points, steps data on complex cut sections, and item topological binding
object.

The object contains data on the base points of surface finish symbol that are associated with item
topological object.

The object is used to construct flat projections of surface finish symbol for item geometric model
element.

0.6.15. MbLeader Leader Line Symbol

MbLeader class is declared in mb_rough.h file.

MbLeader leader line symbol is an inheritor of MbSymbol class. Leader line symbol is described by a set
of identifiers and branches set of surface finish symbols.

The object contains data on leader line used to show surface finish for topological objects.
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The object is used to construct flat projections of surface finish leader line symbol for geometric model
elements.
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0.7. TOPOLOGICAL OBJECTS

Geometric properties that don't depend on quantitative characteristics (lengths and angles) and that reflect
continuous relationship of object elements and its environment are called topological properties. Topological
objects of C3D geometric kernel also describe geometrical properties of the object that depend on
quantitative characteristics, as well as geometrical properties that reflect continuous relationship of the object
with the neighboring elements. Topological objects are constructed based on surfaces, curves and points by
adding to their data, properties, and methods new data, properties, and methods that reflect connections of
the object with its environment.

0.7.1. MbTopologyltem Topological Object

MbTopologyltem class is declared in topology item.h file.
Unlike other topological objects, MbTopologyltem has name, changed change sign and label.
MbTopologyltem is an inheritor of MbTopltem topological object, see Figure O.7.1.1.

[N[bReﬂtem] [TapeBase]
[MbAttrContainen]

| MbTopltem
e’

E/IbTopologyIten]

Fig. 0.7.1.1

MbAttrContainer container provides attributes for named topological objects.
The following topological objects that inherit MbTopologyltem class are implemented in C3D geometric
kernel:
MbFace — a face,
MbEdge — an edge,
MbVertex — a vertex.
MbEdge edge has MbCurveEdge an inheritor: a face that joins edges.
A named topological object has the following methods:
methods used to transform the topological object:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
methods used to work with topological object name:
MbName & GetName(),
SimpleName & GetMainName(),
SimpleName & GetFirstName(),
a method that returns type from enumeration of topological objects,
MbeTopologyType IsA().
Named topological objects are used as elements to construct objects of geometric model.
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0.7.2. MbFace Face

MbFace class is declared in topology.h file.

MbFace face is an inheritor of MbTopologyltem topological object; it is a limited section of a surface that
was assigned normal direction and has defined borders. We'll call the side of surface and face, gaze direction
to which is directed opposite to the normal "outer side"; we'll call the other side "inner side". The sides of
MbSurface surface are not equal relative to the normal, since a surface always has an outer side and an inner
side. Unlike surface, a face permits to assign normal direction, and hence to assign outer side and inner side.

Data set of the face includes a pointer to MbSurface* surface, sameSense coincidence sign of face
normal direction and surface normal direction, as well as RPArray<MbLoop> loops set of face cycles. A face
has some other parameters that are not mandatory, they are used to speed up face methods.

A pointer to a surface can't be zero. Normal to face and normal to surface coincidence sign takes "true"
value if the normals coincide, otherwise the sign takes "false" value. We'll call the side of face "outer side" if
gaze direction to it opposite is to normal direction; we'll call the other side "inner side".

Face cycles describe face borders. Each face border is closed. Each cycle is described by
MbOrientedEdge sequence order of edges along the border. The number of face cycles is equal to the number
of face borders at the surface. One face border is the outer border, it contains the borders of internal cutouts.
The first cycle in the container cycle describes the outer border of the face and it contains inner cycles that
describe inner face borders. Outer face cycle is oriented counterclockwise, and inner cycles are oriented
clockwise when the gaze direction is opposite to face normal. Thus, when we move along the outer side of
face cycle, the face is always on the left side. In Fig. O.7.2.1, arrows indicate the directions of face cycles
and face normal.

face
normal

Fig. 0.7.2.1.

Cycles of one face should not cross each other and themselves.

The face can be named and it can have attributes. A name can be used to identify the face, and attributes
can provide additional face data, such as color, transparency, origin, etc.

A face is used for both body-state and hybrid simulation.

0.7.3. MbEdge Edge

MbEdge class is declared in topology.h file.
MbEdge is an inheritor of MbTopologyltem topological object; it is a curve with assigned direction.
Direction of MbCurve3D curve is strictly related to its parameter increase direction. Unlike a curve, an edge
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may be directed either in curve parameter increase direction or curve parameter decrease direction. An edge
always starts and ends in some MbVertex vertex.

Edge data set contains MbCurve3D* curve pointer to curve, sameSense edge direction and curve
direction coincidence sign, MbVertex* begVertex pointer to start vertex, and MbVertex* endVertex pointer
to end vertex. In Fig. 0.7.3.1, you can see an edge.

edge
————
curve
——— endVertex

sameSense = false
begVertex

Fig. 0.7.3.1.

A pointers to curve or vertex can't be zero. Coincidence sign of edge curve directions takes "true" value, if
edge direction and curve direction coincide, if edge direction and curve direction are opposite then it takes
"false" value. If an edge begins and ends in the same vertex then such edge is closed one. Pointers to start
vertex and end vertex of a closed edge are equal.

An edge can be named and it can have attributes. A name can be used to identify the edge, attributes can
provide additional data on edge, e.g., color, display style, origin, etc.

Edges are used for wireframe simulation.

0.7.4. MbVertex Vertex

MbVertex class is declared in topology.h file.

MbVertex is an inheritor of MbTopologyltem topological object; it is a point with known location error.
Vertex data set includes MbCartPoint point and folerance location error for this point.

A vertex can describe single wireframe point or edge junction point. Any number of edges can meet in a
vertex. Meeting edges point to the same shared vertex. In Fig. O.7.4.1, you can see a vertex that is the
meeting point of three edges.

tolerance =10~

Fig. 0.7.4.1.

If edges are joined inaccurately, then vertex location error is the distance from the vertex point to the most
remote edge. In Fig. O.7.4.2, you can see a tolerant vertex, where four edges meet.
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tolerance

Fig. 0.7.4.2.

A vertex can be named and it can have attributes. A name can be used to identify the vertex, and attributes
can provide additional data on the vertex, e.g. color, display style, origin, etc.
Vertices are used in all simulation methods.

0.7.5. MbCurveEdge Face Edge

MbCurveEdge class is declared in topology.h file.

MbCurveEdge is an inheritor of MbEdge edge; it is an edge constructed on MbSurfacelntersectionCurve
surface intersection curve. MbCurveEdge edge is designed to describe a segment of face border. Unlike
MbEdge edge, MbCurveEdge describes not just a curve, but a segment joining two faces or a segment of
face edge.

Data set of face edge includes a pointer to MbSurfacelntersectionCurve * curve surface intersection
curve, sameSense edge direction and curve direction coincidence sign, MbVertex* begVertex pointer to start
vertex, MbVertex* endVertex pointer to end vertex, MbFace* facePlus pointer to a face located to the left
from the edge, and MbFace* faceMinus pointer to a face located to the right from the edge. In Fig. O.7.5.1,
you can see an edge joining two faces.

endVertex

begVertex

(MbSurfacelntersectionCurve*) curve

Fig. 0.7.5.1.

Face edge may describe a segment that joins two different faces. In this case, pointers to faces located to
the left and to the right from the edge are not zero and they are not equal to each other. Surfaces located in
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data structures of faces connected by an edge coincide with surfaces located in edge curve data set:
facePlus->surface->GetSurface() == curve->curveQOne.suface and
faceMinus->surface->GetSurface() == curve->curveTwo.suface
or
facePlus->surface->GetSurface() == curve->curveTwo.suface and
faceMinus->surface->GetSurface() == curve->curveOne.suface.

If a face is closed by one or both face surface parameters, there are border segments where the face meets
with itself. Such edge is a seam. In this case, pointers to faces located to the left and to the right from the
edge are equal to each other, see Figure O.7.5.2.

begVertex

Fig. 0.7.5.2.

Face edge can describe a segment of face border. Such edge is a boundary one. In this case, pointer to the
face located to the left or to the right of the edge is equal to zero, see Figure O.7.5.3.

endVertex

faceMinus =—= 0

Fig. 0.7.5.3.

Edge having zero length is a polar one and it describes face pole. Pole edge is not a boundary edge, as the
face of polar edge has no border. As a rule, a polar edge is located in specific face surface points. Some curve
corresponds to a polar segment in parameters area of face surface. Pointers to start and end vertices of a polar
edge are equal. Polar edge is shown in Figure O.7.5.4.
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begVertex — endVertex

curve

Fig. 0.7.5.4.

As for the polar edge, a pointer to the face located to the left or to the right from the edge is equal to zero.
Intersectional curve of polar edge has the following data:
curve->curveOne.suface == curve->curveTwo.suface, and
curve->curveOne.curve segment is a copy of the curve->curveTwo.curve segment.

A face edge can be named and it can have attributes. A name can be used to identify the edge, and
attributes can provide additional data, such as color, style, origin, etc.

Edge face is used for body-state and hybrid simulation.

0.7.6. MbLoop Face Cycle

MbLoop class is declared in topology.h file.

MbLoop face cycle is an inheritor of MbTopltem topological object and it describes a sequence of edges
that completely fill some face border.

Cycle data set includes RPArray<MbOrientedEdge> edgeList set of oriented edges in their order along
the face border. Cycle has some other parameters that are not mandatory and that are used to speed up cycle
methods.

Directions of oriented edges and cycle direction coincide. End point of each cycle oriented edge is joined
with the start point of the next oriented edge, see Figure O.7.6.1.

edgeList[2]

edgeList[3]

edgelist[1]

edgeList[0]

Fig. 0.7.6.1.

End point of the last oriented cycle edge is joined with the start point of the first oriented edge.
In Fig. O.7.6.2, you can see a cycle of a spherical face that consists of four oriented edges, two of these
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edges are constructed on seam edge, and two others are pole edges.

Fig. 0.7.6.2.

In sphere parameter face, spherical face cycle will be a rectangular quadrangle.
A cycle is always closed just like a face border. A cycle is directed so that a face is always to the left when
we move along the cycle from face outside side.

0.7.7. MbOrientedEdge Oriented Face Edge

MbOrientedEdge class is declared in topology.h file.

MbOrientedEdge oriented face edge is an inheritor of MbTopltem topological object and it describes face
border segment. Data structure of oriented edge contains MbCurveEdge* curveEdge face edge coincidence
sign of face edge direction with oriented edge direction or face cycle (in this case direction is defined by
orientation parameter).

If curveEdge face edge direction coincides with cycle direction, then orientation==true holds for the
corresponding oriented edge of this face. If curveEdge face edge direction does not coincide with cycle
direction, then orientation==false holds for corresponding oriented edge of this face. In Fig. O.7.7.1, you can
see two oriented edges constructed on the same curveEdge face edge.
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curveEdge

Fig. 0.7.7.1.

In general, MbCurveEdge face edge is included in two cycles that belong to faces joined by this edge.
Face edge is included in one cycle with orientation==true parameter; this face is located to the left from the
edge, and facePlus data field points to this face. As for other cycle, face edge is included in it with
orientation==false orientation sign; this face is located to the right from the edge, and faceMinus data field
points to this face. Thus, adjacent faces and edges joining them are interrelated.

0.7.8. MbFaceShell Set of Faces

MbFaceShell class is declared in topology faceset.h file.

MbFaceShell set of faces is an inheritor of MbTopltem topological object. MbFaceShell data set includes
RPArray<MbFace> faceSet set of faces and closed closure sign for a set of faces. There are some other data
for a set of faces that are not mandatory and that are used to speed up the methods for a set of faces.

Usually a set of faces describes an interconnected segment of simulated object surface. Interconnected
faces that belong to a set of faces meet the following conditions: the faces are joined by shared edges, each
edge joins only two faces so that the outer side of one face transfers to the outer side of another face, so the
shared surface of the faces does not intersect itself.

In Fig. O.7.8.1, you can see a set of interconnected faces. All edges belong to two cycles, all facePlus and
faceMinus edge pointers are not zero, and MbSurfacelntersectionCurve curves that were used to construct
face edges meet the following condition: curveOne.surface!=curveTwo.surface.
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faceSet

closed = true

Fig. 0.7.8.1.

Faces shown in Figure O.7.8.1 form a shared closed surface, the outer side of each face transfers to the
outer side of the adjacent face. closed sign has "true" value for a set of faces that have no boundary edges.

If at least one face in the set has at least one boundary edge, then closed sign of the set of faces takes
"false" value. In Fig. 0.7.8.2, you can see a set of faces, some faces in the set have boundary edges. A
boundary edge is included in one cycle, and only one of facePlus or faceMinus pointers of face boundary
edge is not equal to zero, for MbSurfacelntersectionCurve curves that were used to construct edges
curveOne.surface==curveTwo.surface and buildlype parameter =cbt Boundary. A polar edge is not a
boundary edge, as it does not form an edge.

closed = false

faceSet

Fig. 0.7.8.2.

Interconnected set is called a closed shell if the faces of the set have no borders. If connected faces have
at least one boundary edge, then such interconnected set is called open shell. Please note that closed shell and
open shell make a connected set of faces joined with each other.

Set of faces may consist of several not interconnected parts. In Fig. O.7.8.3, you can see a set of faces
describing two open shells.
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faceSet

closed = false

Fig. 0.7.8.3.

Formally, there are no restrictions for a set of faces. A set may contain separate faces. In Fig. 0.7.8.4, you
can see a set of separate faces. Each face shown in Figure O.7.8.4 forms a separate shell, all face edges are
boundary edges.

Fig. 0.7.8.4.
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The main shell methods are methods of its transformation in space:
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
faces, edges and vertices search methods, as well as methods used to determine the location of a point with
respect to a closed shell:
bool DistanceToBound( const MbCartPoint3D &,...),
bool PointClassification( const MbCartPoint3D &,...).

An open shell covers only a part of boundary surface of the simulated object. Open shells are used to
simulate a surface. If we add to a closed shell a set of its inner points, then we'll receive a solid body. Closed
shells are used to simulate solid bodies. Faces are cut and joined when a shell is constructed. C3D geometric
kernel methods provide this. Closed and open shells are used to construct objects in a geometric model.

0.7.9. Copying a Set of Faces

Each construction method that uses a set of faces represented as MbFaceShell or MbSolid modifies some
vertices, edges and faces of original objects. In order to speed up construction and keep the original set of
faces, MbFaceShell object data are copied completely or partly. C3D geometric kernel uses four methods to
copy MbFaceShell set of faces; these methods are defined in MbeCopyMode enumeration. As a rule,
construction methods together with modified set of faces transfer MbeCopyMode type parameter that
controls transmission of faces, edges and vertices from the original object to the constructed object.

MbeCopyMode enumeration is declared in mb_enum.h file. MbeCopyMode type parameter can take one
of the following four values: cm_Copy, cm_KeepSurface, cm KeepHistory, cm_Same.

If MbeCopyMode = cm_Copy then the original set of faces of modified object is fully copied, so a new
object and the original one will not have shared surfaces, curves, faces, edges, vertices and other objects. In
this case, the new object and the original one will not be interrelated.

If MbeCopyMode = cm_KeepSurface, then the new object and the original one will have the same base
surfaces of faces. This option is used when high construction speed is required.

If MbeCopyMode = cm_KeepHistory, then the new object and the original one will have the same
vertices, base surfaces of faces and faces that were not modified by construction or other action. This option
is used to provide the lowest memory usage.

If MbeCopyMode = cm_Same, then all required data of the original object will be moved to the newly
constructed object, so the original object should be deleted after construction. This option is used when the
original object wouldn't be required and it was constructed specifically for this construction.

MbeCopyMode enumeration is included in the method used to copy MbFaceShell* set of faces:
MbFaceShell::Copy(MbeCopyMode, MbShellHistory*). This method is used in body construct operations
with input parameters containing other bodies

For enumeration value cm_Copy, the original set of faces and its copy don't have shared data. The option
when the original set of faces and its copy have shared base surfaces corresponds to  cm_KeepSurface
enumeration value. The option when the initial set of faces and its copy have the same base surfaces, vertices
and faces not modified by any operation corresponds to c¢m_ KeepHistory enumeration value. For this
purpose, Copy(...) method uses a pointer to MbShellHistory object that stores correspondence between the
original set of faces and its copy. After the operation, a copy of the set of faces is transferred by a parameter
in MbShellHistory::SetOrigins(MbFaceShell&) method to replace unchanged faces in the copy with the
initial faces from the original set of faces. The option when the set of faces is not copied in Copy(...) method
corresponds to cm_Same enumeration value. One should note that if the operation fails, then the original set
of faces will be modified.

MbFaceShell* Duplicate(MbRegDuplicate* iReg) method can be used to copy MbFaceShell set of faces.
MbRegDuplicate object is used to save in the copy the structure of reciprocal links available in the original
set of faces. The copied set of faces and its copy will not be connected.
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0.7.10. Naming of Faces, Edges and Vertices

Faces, edges and vertices have MbName name in a data set. MbName class is declared in name_item.h
file. Faces, edges and vertices are named by C3D geometric kernel during construction of MbFaceShellset of
faces in all shape-generating operations. Parameters of each shape-generating operation contain
MbSNameMaker object. MbSNameMaker object contains the main operation name and a belonging to the
SimpleName type container of simple names that are used to name faces. MbSNameMaker object names
newly constructed faces using the container of simple names. The container of simple names can have either
a set of unique numbers, or one integer, or it can be empty.

If the simple name container contains one integer, the remaining required simple names MbSNameMaker
will create itself by adding the numbers of the natural sequence to the original integer. If the simple name
container is empty, then the starting integer will be zero.

Each integer from the container of simple names will correspond to one of the geometric input parameters
(the segment of the shaping contour of the sketch, the processed edge of the operation, the modifiable face of
the operation, and so on) and will be used to name the new face born by the operation.

Face names will be unique if the elements of the container of simple names are unique. Edges are named
by hashing the names of the faces joined by them. Vertices are named by hashing the names of edges joined
by them. As a face, edge, or vertex identifier, you can use a number that will return the MbName::Hash()
method of the corresponding topological object. The faces, edges, and vertices can be searched in the body
by the known name MbName wusing the FindFaceByName(...), FindEdgeByName(...),
FindVertexByName(...) methods.

In addition, MbSNameMaker object contains construction method version and ensures storage of old
construction methods when they are modified during development of the geometric kernel.
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0.8. OBJECTS OF GEOMETRIC MODEL

A class of geometrical model objects belongs to the class of three-dimensional geometric objects. For
example, the geometric model has an object called "solid" that is used for body, surface and direct
simulation. Bodies are also constructed when objects made of sheet metal are simulated. Besides a body,
objects of geometric model include wire frame, point frame and polygonal object. Assemblies can be
constructed using geometric model objects. Such geometric model objects as local coordinate system can be
used for auxiliary constructions. In addition, geometric model provides an object to construct sketches.

0.8.1. Mbltem Geometric Model Object

Mbltem class is declared in model item.h file.
Mbltem object of geometric model is an inheritor of MbSpaceltem, MbTransactions and
MbAttributeContainer classes. C3D geometric kernel works with geometric model objects shown in Figure

0.8.1.1.
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Figure 0.8.1.1.

MbTransactions construction log contains the data required to construct the object and it permits to repeat
object construction with edited parameters. MbAttrContainer container provides the attributes to geometric
model objects. Thus, geometric model objects contain the following data in addition to their own specific
data:
size t m_countRegistrable is the number of object registrations during writing and reading,
ptrdiff t useCount is the number of times the object was used by other objects,
std::vector<MbCreator *> transactions is the ordered set of object constructors,
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std::multimap<int, MbAttribute*> attributes is object attributes set.
The following objects of geometric model are inheritors of Mbltem class:
MbSolid — solid body,
MbWireFrame — wire frame,
MbPointFrame — point frame,
MbMesh — polygonal object,
Mblnstance — insertion of geometric model object,
MbAssembly — assembly unit of geometric model objects,
MbAssistingltem — auxiliary object,
MbSpacelnstance — insertion of a 3D object,
MbPlanelnstance — insertion of a set of 2D objects.
The main methods of geometric model objects are methods providing editing and visualization of the
objects.
bool RebuildItem( MbeCopyMode sameShell, RPArray<MbSpaceltem> * items ) method
repeats construction of the object using the construction log. This method is called after editing object
internal data.
bltem * CreateMesh( MbeStepData data, bool wire, bool grid, MbRegDuplicate * iReg ) method
constructs a polygonal copy of the object. If the object is an assembly unit or an insertion, then object copy
will also be an assembly unit or an insertion with polygonal objects.
bool AddYourMesh( MbeStepData data, bool wire, bool grid, MbMesh& mesh ) method
adds a polygonal copy into mesh object.
bool NearestMesh( MbeSpaceType sType, MbeTopologyType tType, MbePlaneType pType,
const MbAxis3D & axis, double maxDistance, double & t, double & dMin,
Mbltem *& find, SimpleName & findName,
MbRefltem *& element, SimpleName & elementName,
MbPath & path, MbMatrix3D & from ) method
searches for the nearest find polygon object, its element, their names (findName and elementName), as well
as path in assembly unit structure, and from transformation matrix into global coordinate system.
Objects of geometric model reload the following 3D object methods:
the methods involved in transformation of geometrical objects,
void Move( const MbVector3D & v, MbRegTransform * iReg = NULL ),
void Rotate( const MbAxis3D & axis, double angle, MbRegTransform * iReg = NULL ),
void Transform( const MbMatrix3D & m, MbRegTransform * iReg = NULL ),
the methods that permit to copy, check for coinciding objects, check whether it's possible to make objects
coinciding and make them coinciding:
MbSpaceltem & Duplicate( MbRegDuplicate * iReg = NULL ),
bool IsSame( const MbSpaceltem & item ),
bool IsSimilar( const MbSpaceltem & item ),
bool SetEqual( const MbSpaceltem & item ),
the methods that return a type from enumeration of geometric objects,
MbeSpaceType IsA(),
MbeSpaceType Type(),
MbeSpaceType Family(),
the methods that ensure access to object internal data and their editing:
MbProperty & CreateProperty( MbePrompt name ),
GetProperties( MbProperties & properties ),
SetProperties( MbProperties & properties ).

0.8.2. MbSolid Solid Body

MbSolid class is declared in solid.h file.
MbSolid solid body (or just body) is an inheritor of Mbltem class, and it is described by MbFaceShell*
outer set of faces and multiState connectivity type.
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A body is a set of edges that are joined together by edges and describe the surface of the simulated object.
A body can describe one or more interconnected sets of points. multiState connectivity type indicates that a
body describes one or several interconnected sets of points (in the latter case, a body can be divided into
several bodies).

outer set of body faces can describe two fundamentally different sets of points, depending on the
presence of boundary edges. If the set of faces has no edge then the body describes a set of points located on
surfaces of faces and on inside surfaces of these faces. Such body is called closed and is described by a

closed shell. A closed body is shown in Figure O.8.2.1.

outer->closed = true

multiState = ms_Single

Fig. 0.8.2.1.

If the set of faces has one or several edges, then the body describes a set of points located on face surfaces
of only. Such a body is called open and is described by an open shell. An open body is shown in Figure

0.8.2.1.

outer->closed = false

multiState = ms_Single

Fig. 0.8.2.2.

In most cases, a closed body is described by one interconnected set of faces, that is, by one shell. If a
body has cavities, then they are described by several interconnected sets of faces. In Figure O.8.2.3, you can
see a closed body described by two closed shells, an external shell and an internal one (the latter shell is

located inside the first one).
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outer->closed = true

multiState = ms_Single

Fig. 0.8.2.3.

The body is semitransparent, so you can see a cavity inside it.

Bodies support various operations (such as Boolean operations) on them, these are sets of actions that
result in construction of bodies having different shape. The Result of subtraction of two closed bodies is
shown in Fig. 0.8.2.4.

outer->closed = true

multiState = ms_Single

Fig. 0.8.2.4.

Results of operation on a closed body and a non-closed body are completely different as the operations
are executed on different sets of points. A result of subtraction of two closed bodies is shown in Figure
0.8.2.5.
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outer->closed = false

multiState = ms_Single

Fig. 0.8.2.5.

A body can be multiply-connected (multi-part), that is, they can consist of several separate parts. In this
case, multiState is equal to ms_Multiple. Doubly-connected body described by two closed shells is shown in
Figure O0.8.2.6.

outer->closed = true

multiState = ms_Multiple

Fig. 0.8.2.6.

Such a body can be divided into two simply connected closed bodies using ::DetachParts (...) method. A
body in Figure 0.8.2.6 is semitransparent. A doubly-connected body described by two non-closed shells is
shown in Figure O.8.2.7.
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outer->closed = false

multiState = ms_Multiple

Fig. 0.8.2.7.

Such a body can be divided into two simply connected non-closed bodies.

Bodies are constructed using the methods provided by C3D geometric kernel. Bodies with simple shapes
are constructed by points, curves and surfaces. Operations permit you to construct more complex bodies
based on simple ones. You can edit initial bodies and construct modified ones by changing the parameters in
MbTransactions construction log or by directly modifying the elements of previously constructed bodies.
Open bodies are used for surface simulation. Open body permits you to focus on complex shapes of
simulated objects.

0.8.3. MbWireFrame Wireframe

MbWireFrame class is declared in wire_frame.h file.

MbWireFrame wireframe is an inheritor of Mbltem class and is described by
std::vector<MbEdge*>edges set of edges, parts number of interconnected parts and closed boundary vertices
absence sign.

A wireframe is a set of edges that are joined at vertices and describe frame structure of simulated object.
A wireframe can describe one or more interconnected sets of points. parts number of interconnected parts
indicates that wireframe describes one or several interconnected sets of points (in the latter case, a wireframe
can be divided into several wire frame).

A wireframe can be closed or open, depending on the presence or absence of boundary vertices. Closed
wireframe is shown in Figure O.8.3.1.

parts =1

closed = true

Fig. 0.8.3.1.
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Open wireframe is shown in Figure O.8.3.2.

parts =1

closed = false

Fig. 0.8.3.2.

An open wireframe consisting of two interconnected sets of edges is shown in Figure 0.8.3.3.

parts =2

edges

closed = false

Fig. 0.8.3.3.

Closed wireframe consisting of two interconnected sets of edges is shown in Figure O.8.3.4.

parts =2

edges

closed = true

Fig. 0.8.3.4.

A wireframe can be used to construct trajectories, space sketches, as well as for auxiliary constructions.

421



0.8.4 MbPointFrame Point Frame

MbPointFrame class is declared in point_frame.h file.

MbWireFrame point frame is an inheritor of Mbltem class and it is described by
std::vector<Mb Vertex*>vertices set of points presented as vertices.

Point frame is shown in Figure O.8.4.1.
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Fig. 0.8.4.1.

Point frame can be used either to position other objects or for auxiliary constructions.

0.8.5. MbMesh Polygonal Object

MbMesh class is declared in mesh.h file.

MbMesh polygonal object is an inheritor of Mbltem class and it is described by RPArray<MbGrid>grids
set of triangulations, RPArray<MbPolygon3D>wires set of polygons, RPArray<MbApex3D>peaks set of
apexes, MbRefltem* item pointer to original object, type, cube dimensional cube and closed closure sign.

Polygonal object is a set of triangular and quadrangular plates, polylines and individual points. One of the
methods used to construct a polygonal object is associated with approximation of other geometric model
objects, for example, a body. Every ith body face is approximated by grids[i] triangulation, every jth body
edge is approximated by wires[;] polygon, every kth vertex is associated with peaks[k] apex, closed closure
sign corresponds to body closure. One other way to construct a polygonal object is to import data, using
polygon representation converter.

MbGrid triangulation is Sarray<MbFloatPoint3D>points set of points and
Sarray<MbFloatVector3D>normals set of normals (the number of points is equal to the number of normals),
Sarray<MbFloatPoint>params set of two-dimensional points of surface parametric area (the number of 2D
points is equal to the number of 3D points, otherwise it is equal to zero, i. e., the set can be empty),
Sarray<MbTriangle> triangles set of triangular plates in the form of three indices of points set of points,
SArray<MbQuadrangle>quadrangles set of quadrangular plates in the form of four indices of points set of
points. Triangulation plates approximate some surface.

MbPolygon3D polygon is an ordered set of points, their serial connection permits you to construct a
polyline that approximates some curve.

MbApex3D apex is a point that contains additional data.

item pointer to the original object may be equal to zero, #ype type may be undefined.

A vector image of a polygonal object is shown in Figure 0.8.5.1.
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Fig. 0.8.5.1.
A toned image of a polygonal object is shown in Figure O.8.5.2.

Fig. 0.8.5.2.

In Figure O.8.5.2, you can see individual triangles of the object, this is due to the fact that direction of
normals in each triangle is constant. If direction of normals in triangulation triangles is permanently
changing, then individual object triangles become invisible, see Figure 0.8.5.3.
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Fig. 0.8.5.3.

You can use Mbltem::CreateMesh(...) or Mbltem::AddYourMesh(...) method to construct a polygonal
object. Polygon object is used to visualize, calculate and manufacture simulated objects. The main
advantages of polygons are ease of use and high speed calculations, for example, for intersection with a
straight line.

0.8.6 Mblnstance Insertion

Mblnstance class is declared in instance.h file.

Mblnstance insertion is an inheritor of Mbltem class, it is described by Mbltem* item object of geometric
model and MbPlacement3D place local coordinate system. Insertion is item object that was moved into
place local coordinate system.

Insertion has all properties of item object. The difference is that Move(...), Rotate(...), Transform(...)
methods modify place local coordinate system not modifying item object.

Object insertion may contain a body, a wireframe, a point frame and a polygonal object, but it can't
contain other insertion or assembly unit.

0.8.7. MbAssembly Assembly Unit

MbAssembly class is declared in assembly.h file.

MbAssembly assembly unit or assembly is an inheritor of Mbltem class and it is described by
std::vector<Mbltem*>assemblyltems set of objects of geometric model and MbPlacement3D place local
coordinate system.

Assembly is a set of geometric model objects that can be processed as a single entity.

Assembly unit is shown in Figure O.8.7.1.

424



A

Fig. 0.8.7.1.

An assembly unit may contain other assembly units, i.e., it may have a tree structure.

0.8.8. MbSpacelnstance Three-Dimensional Object Insertion

MbSpacelnstance class is declared in space_instanse.h file.

MbSpacelnstance 3D object insertion is an inheritor of _Mbltem class, and it is described by
MbSpaceltem* spaceltem geometric object.

Insertion acts as geometric object wrapper that permits you to process it as geometric model object. An
insert adds to an ordinary geometric object a construction log, attributes and_Mbltem geometric model object
methods. 3D object insertion is intended for auxiliary constructions. Surface insertion is shown in Figure
0.8.8.1.
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Fig. 0.8.8.1.

Object insertion can contain MbSurface surface, MbCurve3D curve, MbPoint3D point or MbLegend
auxiliary geometric object. Geometric object insertion is not used for objects that inherit an object of Mbltem
geometric model object (a body, a wireframe, a point frame, a polygon, an assembly or an insertion).

0.8.9. MbPlanelnstance Two-Dimensional Object Insertion

MbPlanelnstance class is declared in plane_instanse.h file.

MbPlanelnstance 2D object insertion is an inheritor of _Mbltem class and it is described by
std::vector<MbPlaneltem>planeltems set of 2D geometric objects and MbPlacement3D place local
coordinate system. Two-dimensional objects are located in XY plane of the local coordinate system.

Insertion acts as a wrapper of 2D geometric objects that permits you to process them as geometric model
object. An insert adds construction log, attributes and methods of Mbltem geometric model object to 2D
geometric objects. Two-dimensional object insertion is intended for auxiliary constructions. An insertion of
2D curves is shown in Figure 0.8.9.1.

Fig. 0.8.9.1.
An insertion of 2D objects can contain MbCurve 2D curve, MbMultiline multiline or MbRegion region.

426



0.8.10. MbAssistingltem Auxiliary Object

MbAssistingltem class is declared in assisting_item.h file.

MbAssistingltem auxiliary object of geometric model is an inheritor of Mbltem class and it is described
by MbPlacement3D place local coordinate system. An auxiliary object is used to position other objects. An
auxiliary object has a construction log, attributes and methods of Mbltem geometric model object.
auxiliary constructions. An auxiliary object is shown in Figure O.8.10.1.

place.axisZ

place.axisY

place.origin

place.axisX

Fig. 0.8.10.1.
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0.9. MULTITHREADING

Multithreading support in the mathematical kernel implies:
— Use of parallel calculations in the kernel.

— Support of user multithreading.

The mathematical kernel implements the mechanisms that enable thread-safe use of the kernel
interfaces in parallel calculations.

To establish internal multithreading the kernel uses the OpenMP technology.
The main parallel operations in the kernel includes (but not limited to):
* Construction of planar projections

* Calculation of polygonal meshes
* Calculation of mass-inertia properties
* Converters operations

If an interface implementation employs parallel calculations, then the corresponding information is
included in the comments to the interface.

To ensure thread-safe use of kernel interfaces in multithreaded applications synchronization objects based
on system mechanisms are used.

0.9.1. Thread-safety of kernel objects

Thread-safety of the kernel objects is implemented with the special mechanism — multithreaded caching
which provides a thread-safe access to an object data and enables effective parallel calculations in case if the
object is processed in several threads simultaneously.

Each thread works with its own copy of cached data that prevents data contention between threads. The
cache manager controls the multithreaded caches and is responsible for creating, storing and providing
cached data for the current thread.

It is important to note that multithreaded caching works effectively for both parallel and sequential
calculations. The definite plus is that migration to using multithreaded caches requires minimal code
refactoring. Although side effects of using multithreaded caches should be taken into account:

— Some increase in memory usage.

— Some small time overhead for retrieving cached data. If there is no parallelism, it may make
some value.

Multithreaded caching could be switched on or off by changing the kernel multithreading mode.

0.9.2. Multithreaded caches implementation

The base class for cached data and the cache manager class are defined in the tool multithreading.h
file.

0.9.2.1. Cache manager CacheManager

The cache manager is defined as a template class working with cached data and includes the
members:
* longTerm - data of the main thread; is used in serial execution and to initialize data of
multithreaded caches.
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+ tcache - a list of caches with data which are used in parallel calculations. Each thread uses
only its own copy of the data which is available by the thread identifier threadKey. For
multithreaded processing of dependent (with shared data) objects, the mtm_Safeltems
multithreading mode or higher should be used.

* lock — cache manager lock which is used when selecting caches and changing the main thread
cache.

The template class CacheManager<class T> implements the methods:
« T * operator() - Returns a pointer to the cached data of the current thread. Always returns
non-null value.

* void Reset ( bool resetLongTerm ) - Invalidates caches. If resetLongTerm = true, deletes
the main thread cache.

* void CleanAll( bool doPostproc, bool force ) - Deletes all caches and unsubscribes from the
garbage collection. Should be called in sequential code.

T * LongTerm() - Returns a pointer to cached data of the main thread. Always returns non-
null value. All operations with the main thread cache should be protected by the cache
manager lock.

+  CommonMutex * GetLock() - Returns a pointer to the lock for operations with the main
thread cache, considering whether the code runs in parallel. Can return null value (good for
use with ScopedLock).

*  CommonMutex * GetLockHard() - Returns a pointer to the lock for operations with the
main thread cache. Always returns non-null value.

* bool ResetCacheData() - Cleaning function, used by the garbage collector.

The cache manager algorithm depends on the kernel multithreading mode MbeMultithreadedMode.

If the kernel multithreading mode is defined as mtm_Safeltems or higher, the cache manager
initiates use of dedicated cache for each thread. In this case, the cache manager selects a copy of
cached data for a thread by its thread ID.

After switching to serial execution the cache manager calls a Postprocess() function for caches
post-processing. The specified function iterates through the caches used in parallel computing and
calls the function longTerm.MergeWith() with the data of the each cache as a parameter. After the
function Postprocess() finished the caches are destroyed. Then, when a cache is requested, the
Cache Manager returns the main thread cache (longTerm).

The CacheManager class is derived from the CacheCleaner class, that allows cleaning caches on
demand.

0.9.2.2. Base cached data class AuxiliaryData

Any cached data class should be derived from the base class AuxiliaryData and contain default
constructor and copy constructor.

Also, if caches post-processing is needed after exiting parallel calculations, a cached data class
should override the method void MergeWith( AuxiliaryData * ) which is called by the
CacheManager for the main cache with the data of the each cache as a parameter. Default
implementation of MergeWith() does not perform any post-processing.

An object class that needs data caching should define its cached data as a class derived from
AuxiliaryData class, and include an instance of CacheManager as a class member.

For parallel processing of dependent (with shared data) objects the kernel multithreading mode
mtm_Safeltems or higher should be used.
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0.9.3. Garbage collection in Cache Manager

The cache manager CacheManager deletes unused caches at the first call from a sequential
code.

In addition, garbage collection runs automatically on exiting a parallel region.

The mathematical kernel provides an interface for clearing cached data — the class
MbGarbageCollection.

The class MbGarbageCollection is the garbage collector which clears caches in registered
objects of the CacheCleaner type. By a request it deletes caches in the registered objects.

In order to enable a garbage collection in an object of type CacheCleaner, the object needs to
implement the method ResetCacheData() for caches cleaning and to subscribe to the garbage
collection in the class MbGarbageCollection.

The CacheManager class is derived from the CacheCleaner class, that makes it possible to run
caches clearing in the CacheManager manually. For that, when creating a cache for a thread the
CacheManager registers itself in the MbGarbageCollection class.

0.9.3.1. Base class for objects that require garbage collection

In order to subscribe to the garbage collection, a class should be derived from the class
CacheCleaner and should implement the method ResetCacheData for deleting cached data.

CacheCleaner is the base class for objects that require garbage collection. It implements the
methods:

* void SubcribeOnCleaning() - Subscribe the object for garbage collection.
* void UnsubcribeOnCleaning() - Unsubscribe the object from garbage collection.
The class CacheCleaner also defines the method:

* bool ResetCacheData() - Reset cached data. Should return true if the object was
unsubscribed from garbage collection.

0.9.3.2. Class MbGarbageCollection

The class MbGarbageCollection is the garbage collector for objects of type CacheCleaner,
which keep cached data. By a request the MbGarbageCollection clears caches in registered objects
by calling the ResetCacheData for each object.

The class MbGarbageCollection implements the methods:
* void Subscribe(CacheCleaner * obj) - Subscribe the object to the garbage collection.

* void Unsubscribe(CacheCleaner * obj) - Unsubscribe the object from the garbage
collection.

+ static bool Run(bool force = false) - Perform the garbage collection. Should be called in
sequential code. When called in a parallel region, does nothing. If force = false, then run
garbage collection in caches created for threads which are finished, if true, then force
garbage collection in all caches. Returns TRUE if the garbage collection is done.

+ static void Enable(bool allow = true) - Enable/disable collecting data for garbage
collection. By default it is enabled.
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0.9.4. Kernel multithreading modes

The kernel multithreading mode controls the thread-safety of the kernel objects and defines
which kernel operations will be paralleled.

The kernel multithreading mode is defined as MbeMultithreadedMode enumeration in the file
tool multithreading.h.

The kernel can work in the following modes:

mtm_Off - The kernel multithreading is off. In this mode all operations are executed
sequentially. The mechanism providing the kernel objects thread-safety is switched off.

mtm_Standard — In the standard multithreading mode the limited operations are
paralleled, namely, only operations that process independent data. The mechanism providing
the kernel objects thread-safety is switched off.

mtm_Safeltems — The objects thread-safety mode. In this mode the mechanism of
multithreading caches is switched on, but still only limited operations are paralleled. This
mode is used to support multithreaded operations in user applications.

mtm_Items — The objects multithreading mode. In this mode the full multithreading of the
kernel operations is on. The kernel operations that process both independent and dependent
data are paralleled. This mode also can be used to support multithreaded operations in user
applications.

mtm_Max — The maximal kernel multithreading is on. Currently this mode is equal to
mtm_Items mode.

By default the kernel works in mtm_Max mode.
The kernel provides interfaces for dynamic switching the multithreading mode.

The interfaces for switching the kernel multithreading mode are declared in the file mb_variables.h.
The following static methods of the Math class can used for switching the kernel multithreading mode:

bool Multithreaded() - Checks if the mtm_Standard mode is used (whether multithreading is
on).

void SetMultithreaded( bool b ) - If b = false, disables multithreading (sets the mode to
mtm_Off). If b = true, enables limited multithreading (sets the mode to mtm_Standard).

MbeMultithreadedMode MultithreadedMode() - Returns the current multithreading
mode.

bool CheckMultithreadedMode (MbeMultithreadedMode mode ) - Checks if the current
mode implies the specified mode (is not lower than the specified mode).

void SetMultithreadedMode (MbeMultithreadedMode mode ) - Sets the specified mode.

0.9.5. Synchronization objects

The synchronization objects are defined in the file tool mutex.h.

0.9.5.1. Locks

By default the kernel uses lock classes implemented on base of system synchronization API that
enables safe use of alternative parallel frameworks (not only OpenMP) in user applications.

But the kernel can be switched to using locks based on OpenMP locks.

On Windows system locks by default are implemented on base of critical sections. On Linux
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system locks are implemented on base of pthread mutex t.

The lock classes implementation is controlled by C3D_NATIVE_LOCK variable. Redefining
the variable C3D_NATIVE LOCK in user applications is prohibited.

The classes CommonMutex and CommonRecursiveMutex define lock and recursive lock.
They provides the methods lock() and unlock().

The classes ScopedLock and ScopedRecursiveLock define scoped lock and scoped recursive
lock. They can accept a null pointer to a mutex. Locking occurs if the pointer to the mutex is
nonzero and the code runs in parallel.

0.9.5.2. Base synchronization objects

The class MbSyncltem is the base synchronization object with lazy initialization. Creates a lock
(mutex) when needed. Implements methods Lock() and Unlock().

The class MbNestSyncltem is the base synchronization object with lazy initialization which
supports nested locks. Creates a lock (mutex) when needed. Implements methods Lock() and
Unlock().

The class MbPersistentSyncltem is the base synchronization object implementing methods
Lock() and Unlock(). Always creates a lock (mutex).

The class MbPersistentNestSyncltem is the base synchronization object which supports nested
locks. It implements methods Lock() and Unlock(). Always creates a lock (mutex).

The kernel objects that need synchronization are inherited from one of these classes.

0.9.6. Support of multithreading in user application

For using the kernel interfaces in several threads, the multithreading mode mtm_Safeltems or
higher should be defined for the kernel. By default the kernel works in maximal multithreading
mode (mtm_Max).

If the user application uses the kernel interfaces in parallel computation, it must notify the kernel
about entering and exiting a parallel region. For that, the class ParallelRegionGuard (a scoped
guard of parallel region) or pair of the functions EnterParallelRegion and ExitParallelRegion
could be used.

0.9.6.1. Protection of parallel code in user application

The class ParallelRegionGuard notifies the kernel that code in the scope runs in parallel. It
should be used to protect a parallel region.
Instead of the class ParallelRegionGuard, the next pair of functions also could be used to notify
the kernel about a parallel region boundaries:
* The function EnterParallelRegion notifies the kernel about entering a parallel region.
» The function ExitParallelRegion notifies the kernel about exiting a parallel region.

Interfaces ParallelRegionGuard or EnterParallelRegion and ExitParallelRegion must be used in
cases if the kernel is used in several threads.

Note, that before start using parallel computing it is necessary to ensure that the multithreading
mode mtm_Safeltems or higher is set in the kernel (by default the maximal multithreading mode
mtm_Max is set).
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0.9.6.2. The examples of notifying the kernel about its use in parallel computing

ParallelRegionGuard should be called one time before the start working in several threads. For
example:

<...Sequential code...>

1f( Math::CheckMultithreadedMode( mtm_Items ) ) {
ParallelRegionGuard guard; // works in the scope
std::thread ti( funcl );
std: :thread t2( func2 );
tl.join();
t2.jo0in();

}

<...Sequential code...>

The same can be done using a couple of functions EnterParallelRegion and ExitParallelRegion
instead of ParallelRegionGuard:

<...Sequential code...>

if( Math::CheckMultithreadedMode( mtm_Items ) ) {
EnterParallelRegion();
std: :thread ti1( funcl );
std: :thread t2( func2 );
til.join();
t2.join();
ExitParallelRegion();

}

<...Sequential code...>

The purpose of the interfaces ParallelRegionGuard, EnterParallelRegion and ExitParallelRegion is
notifying the kernel about parallel calculations in a user application. These notifications are necessary to

guarantee correct work of thread-safety mechanisms in the kernel.

0.9.6.3. Quick reference on organizing parallel computing using C3D interfaces

1. Before running parallel calculations the application must check that the multithreading mode of the
kernel allows parallel computing. To use kernel interfaces in several threads, the multithreading
mode of the kernel must be set to at least mtm_Safeltems or higher.

Example of checking the kernel multithreading mode:
bool useParallel = Math::CheckMultithreadedMode( mtm_Safeltems );

2. When using parallel calculations the user application must notify the kernel about entering

and exiting a parallel region.
o If a parallel cycle is used, the application must call EnterParallelRegion before the
cycle start and ExitParalleIRegion after the cycle finish.
Example:
if( Math::CheckMultithreadedMode( mtm_Items ) ) {
EnterParallelRegion();
#pragma omp parallel for
for ( ptrdiff t i = 0; 1 < count; ++1 ) {
/* Cycle body */

}
ExitParallelRegion();

}

o If the kernel interfaces are simply called from several threads, then in each thread
EnterParallelRegion must be placed before the kernel calls and
ExitParallelRegion must be placed after the kernel calls.
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Example:
Thread 1:
EnterParallelRegion();
// The kernel calls...
ExitParallelRegion();

Thread 2:

EnterParallelRegion();
// The kernel calls...
ExitParallelRegion();

After the first call of EnterParallelRegion the kernel start using multithreaded
caches and after the last call of ExitParallelRegion it returns to the base mode of

sequential execution.
It is not recommended calling ParallelRegionGuard, EnterParallelRegion and

ExitParallelRegion without need (in multithreading absence), because use of multithreaded
caches in sequential execution entails some time overhead of obtaining cached data.
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0.10. FORMAT C3D

A geometric model could be saved in a compact form to a memory buffer or a disk file. There are two
types of C3D format for storing geometric model — compact and extended.

This article describes C3D formats for storing geometric model and the interfaces the kernel provides for
writing and reading geometric model data in C3D format.

0.10.1. Format for storing geometric model

0.10.1.1. Notions and terms

Recall that serialization is a process of translating an object (class) to a sequence of bytes for storing it in
a memory buffer (a file). Deserialization is an opposite process of restoring an object from a sequence of
bytes.

Stream operations is operations of writing and reading a model and its objects in a serialized form (work
with write and read streams).

Objects that can be serialized (represented as a sequence of bytes) are called streaming objects.

A continuous memory block (a sequence of bytes) is called a cluster, and a set of clusters is called a file
space. A file space has a single point of writing (reading) — a position in a current file space.

0.10.1.2. Geometric model serialization

Geometric model C3D could be serialized (represented as a sequence of bytes) to a set of file spaces.

All main objects of geometric model are streaming, that is, they could write and read their data in a file
space. Each model object writes itself starting from the last unfinished cluster of the current file space.

Writing a geometric model starts with MbModel object.

Each model object first writes data of its parent object (if it exists), then its own data and objects it
contains or references.

After a geometric model is fully serialized to a set of file spaces, using a special function, a single
sequential memory buffer is created to which a special header is written and data of all clusters (from all file
spaces) sequentially are copied.

Created in this way memory buffer, contains geometric model data as a sequence of bytes and could be
transferred to another location (another application) via memory for subsequent restoring the model or
could be saved to a disk file.

0.10.1.3. Compact format C3D

The compact format provides a compact and fast storing data of geometric model to a memory buffer
(file) and fast reading the whole model from the memory buffer (file).
Main features of the compact format:
— Minimal overhead while writing and reading a model.
— Compact data storage.
—  Allowed reading the whole model.
* Information about model structure and about model objects is available only after
reading the whole model.
* Impossible to read model objects in an arbitrary order or read a few selected objects.

The compact format puts all model data in a single file space, that is, assumes only one point of data
writing or reading — a current cluster of given file space.

The Scheme 1 shows the structure of serialized data of geometric model before saving it in a sequential
memory buffer when using the compact format.
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File space
(array of cluster indexes)

Clusters with
geometric model
data

Scheme 1. Model data structure in a file space (compact format).

While writing a model, if a geometric object contains another object or references to another object, then
the latter object is written inside the referring object.

An object referenced by multiple objects is declared as registered. While writing first time, such
object is registered in a special Table Of Registered Objects. All subsequent objects, that refer to
this registered object, contain only a reference to the record in the table.

The Scheme 2 shows a structure of a geometric model data in a sequential memory buffer for the

compact format.
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Scheme 2. Structure of a geometric model data in a sequential memory buffer (compact format).

0.10.1.4. Extended format C3D
The extended format provides independent storing objects of geometric model. In addition to the model
objects data, the extended format keeps objects storage positions in the buffer and a brief table of contents of
the model, that allows obtaining information about the model structure without full reading it, and also
provides the ability of selective reading of the model objects.
Main features of the extended format:
— Independent storage of objects, which provides the ability of selective reading of the model
objects.
— Support of a table of contents for a model which keeps information about the model objects
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and links to their storage positions.
— Some increase in the size of the stored data.

The extended format writes model objects into several file spaces, that is, supports multiple writing
(reading) points — the current cluster in each file space.

File space 1 File space 2 File spaces 3 ... N

v vy LR AN YUY VoYY

Reference to Model table Objects of Mbltem type
model table of contents of contents and other
+ MbModel object registered objects

Scheme 3. Model data structure in file spaces (extended format).

The Scheme 3 shows the structure of serialized data of a geometric model before saving it to a sequential
memory buffer when using the extended format.

Objects of each level of the model are written to a separate space file (a number of file spaces used is
determined by the nesting depth of the model objects).

The Scheme 4 shows a structure of a geometric model data in a sequential memory buffer for the
extended format.
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Scheme 4. Structure of a geometric model data in a sequential memory buffer (extended format).
Model table of contents

The extended format implements generation of a geometric model tree and writing/reading it in a memory
buffer (file).
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The tree is created for all objects of type Mbltem of the geometric model and is written as a table of
contents of the model in a separate file space, a link to which is added to the file header.
The table of contents of the model, written in the file, contains:
1. Data of model tree nodes.
Each tree node stores information for one object of the geometric model. A node keeps the
following data:
*  Aunique ID of the node in the model tree.
» Object type (MbeSpaceType).
* Object name (SimpleName).
* Object gabarit.
* Information about the object attributes.
* A list of the immediate descendants of the node.
*  Writing/reading position in a file.
2. Information about the model tree roots.

The model table of contents could be read separately, that allows obtaining information about the model
structure and its main objects without the whole model loading. Using data of the model table of contents it
is possible to choose and separately read any model objects listed in the table of contents.

Working with embodiments

The extended C3D format provides an opportunity to work with embodiments (variants of model
implementation):
* A model with embodiments should be saved (serialized) to a file using the class writer ex (in the
extended format) and should be read using the class reader ex.
* Upon reading a model catalog from the file with embodiments, it is possible to look through the
embodiments hierarchy, select an embodiment and read its contents as a separate model.
*  When reading a file with embodiments without use of a model catalog (for example, by direct call to
ReadModelltems function), the first in order (default) embodiment will be read.
A model with embodiments is created as an object MbModel, which contains a set of assemblies
(MbAssembly objects). Each assembly represents one embodiment (contains objects of one embodiment)

and has an attribute of at Embodiment type. The first in order embodiment in the model is the default
embodiment.

An assembly is considered an embodiment and is treated as an embodiment only if it is located directly in
the MbModel object (is one of the roots of the model tree) and has an attribute of at Embodiment type.
MbAssembly objects which are located inside embodiments (deeper than the root in the model tree) are
treated as regular assemblies.

An attribute of at Embodiment type serves as an indicator of an embodiment. It must contain the name
(SimpleName) of the current embodiment and the name (SimpleName) of the parent embodiment (or
UNDEFINED_ SNAME if there is no parent).

To provide the ability to view the hierarchy of embodiments and selective reading, a model with
embodiments should be serialized using the class writer ex. After that the model with embodiments should
be read using the class reader ex.

When reading C3D file with embodiments, only one embodiment can be read.

If reading a file with embodiments in a usual way, that is, without use of model tree (for example, using
direct call to the function ReadModelltems), then the first (default) embodiment will be read.

In order to read any other embodiment, a model tree should be read first. Then, using the model tree, it is
possible to look through the hierarchy of embodiments and load the selected one as a separate model.

0.10.2. Read and write streaming objects

Classes for reading and writing of streaming objects of the model (read and write streams) are
defined in the file tape.h. They inherit from the base class tape.
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0.10.2.1. Base class for read and write streams

The base class for read and write streams tape contains references to a data buffer, a manager of
write/read streams and a structure for registration of written (read) objects.

It implements methods for managing the data buffer, registering objects and working with a
progress indicator:

Access to a data buffer:
const iobuf Seq & GetlOBuffer() - Access to a data buffer.

iobuf Seq & GetlOBufter() - Access to a data buffer.

bool IsOwnBuffer() - Whether owning the buffer?

void SetOwnBufter( bool ) - Set a flag of owning the buffer.
Managing an operation mode of data buffer:

uint8 mode() - Get an operation mode of the buffer.
void setMode( uint8 ) - Set an operation mode of the buffer.
void clearState( state ) - Clear the buffer state.

void setState ( state ) - Add the buffer state.

Requesting the data buffer state:

int fresh() - Is the buffer fresh?

bool good() - Whether the buffer state is correct?
uint8 eof() - Is the end of the file reached?

uint32 state() - Get the flag of the buffer state.
10::pos tell() - Get the current position in the stream.

Managing versions:

void SetVersionsByStorage() - Set the current version to be equal to the storage version.
VERSION MathVersion() - Return the main version (version of the mathematical kernel).
VERSION AppVersion( size t ind ) - Return the additional version (version of the target
application).

const VersionContainer & GetVersionsContainer() - Get access to the version container.

void SetVersionsContainer( const VersionContainer & ) - Set the version of open file.
VERSION SetStorageVersion( VERSION ) - Set the storage version.

Managing registration of objects:

void registrate( const TapeBase * ) - Register the pointer.

void unregistrate( const TapeBase * ) - unregister the pointer.

bool exist ( const TapeBase * ) - Does a registered object exist?

void flushRegister() - Flush the registration array.

size t RegisteredCount() - Get the number of registered objects.

size t GetMaxRegisteredCount() - Get the maximal possible number of objects for
registration.

void ReserveRegistered( size tn ) - Reserve memory for n objects.

uint8 GetlndexType( size t index ) - Get index type.

Working with a progress indicator:

void InitProgress( IProgressindicator * pr ) - Initialize the progress indicator.

void InitProgress( ProgressBarWrapper & pr ) - Initialize the progress indicator.

void ResetProgress() - Release the current progress indicator. Set the parent progress
indicator, if it exists.

ProgressBarWrapper * GetProgress() - Get the progress indicator.

0.10.2.2. Write streams

Class writer

The class writer provides writing the model to a data buffer (to a file space) in the compact

439



format. It inherits from the base class tape.
The class writer implements:
» Static functions for creating the class instance:
o writer_ptr CreateWriter( std_unique ptr<iobuf Seg>, uint16 ) - Creates the class instance for a
given sequential memory buffer of type iobuf Seq.
o writer ptr CreateMemWriter( membuf &, uint8 ) - Creates the class instance for a given
memory buffer of type membuf.
* The methods for writing objects of different types to the buffer:
o void  writeObject( const TapeBase * ) - Write an  object.
void writeObjectPointer( const TapeBase * ) - Write a pointer to an object.

o void writeByte( uint8 ) - Write a byte to the buffer.

o void writeBytes ( const void *, size t ) - Write a bytes sequence to the buffer.
void writeUInt64( const uint64 & ) - Write unsigned 64-bit integer. Returns a number of
written bytes.

o void writeInt64 ( const int64 & ) - Write a 64-bit integer. Returns a number of written
bytes.

o writer &  writeChar ( const char * ) - Write CHAR string to the stream. (ANSI coding,
Russian locale).

o writer &  writeWchar( const TCHAR * ) - Write WCHAR string to the stream (stored
in the stream as UTF-16).

o writer & _ writeWcharT( const wchar t * ) - Write WCHAR string to the stream (stored
in the stream as UTF-16).

o size t lenWchar( const TCHAR * ) - Length of WCHAR string in the stream (stored
in the stream as UTF-16).

* The methods for writing a model tree and access to it (these methods are not supported by
this class - have an empty implementation):
o void WriteModelCatalog() - Write a model tree.
o const c3d::IModelTree * GetModelTree() const - Get a pointer to the model tree.

Class writer_ex

The class writer_ex provides writing the model to a data buffer (to a set of file spaces) in the
extended format. It inherits from the class writer.
The class writer_ex implements:
» Static functions for creating the class instance:
o std unique ptr<writer ex> CreateWriterEx( std unique ptr<iobuf Seg>, uintl6 ) -
Creates the class instance for a given sequential memory buffer of type iobuf Seq.
o std unique ptr<writer ex> CreateMemWriterEx( membuf &, uint8 ) - Creates the class
instance for a given memory buffer of type membuf.
* The methods for writing a model tree and access to it:
o void WriteModelCatalog() - Write a model tree.
o const c3d::IModelTree * GetModelTree() const - Get a pointer to the model tree.

0.10.2.3. Read streams

Class reader

The class reader provides reading from a data buffer (a file space), written in the compact
format. It inherits from the base class tape.
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The class reader implements:
» Static functions for creating the class instance:
o reader ptr CreateReader ( std unique ptr<iobuf Seg>, uintl6 ) - Creates the class
instance for a sequential memory buffer.
o reader ptr CreateMemReader ( membuf &, uint8 ) - Creates the class instance for a
memory buffer.
* The methods for reading objects of different types from the buffer:
TapeBase * readObject ( TapeBase * ) - Read an object.
TapeBase * readObjectPointer() - Read a pointer to an object.
bool readUInt64( uint64 & ) - Read unsigned 64-bit integer from the buffer.
bool readInt64( int64 & ) - Read 64-bit integer from the buffer.
int readByte() - Read a byte from the buffer.
bool readBytes( void *, size t) - Read bytes sequence from the buffer.
* The methods for managing reading of the model tree and partial reading of the model
objects (these methods are not supported by this class - have an empty implementation):
o void ReadObjectCatalog() - Read the model table of contents.
o membuf * ReadObjectByPosition ( const ClusterReference & ) - Read an object by its
position in the buffer.
© bool SetReadPosition ( ClusterReference & ) - Set reading position.
o const c3d::IModelTree * GetModelTree() const - Get a pointer to the model tree.
© bool IsFullRead() - Get an indicator of full reading of the current object (whether the
current object is read in the whole).
o void SetFullRead( bool ) - Set an indicator of full reading of the current object (read the
current object in the whole).
* The method to get reading errors:
o uint32 GetLastError() - Get reading errors.
* The methods for working with progress indicator.:
o void InitProgress( [ProgressIndicator * ) - Initialize the progress indicator.
o void InitProgress( ProgressBarWrapper & ) - Initialize the progress indicator.

o O O O O O

Class reader_ex

The class reader_ex provides reading from a data buffer (a set of file spaces), written in the
compact or extended format. It can read objects from several file spaces by given positions. It
inherits from the class reader.

The class reader_ex implements:

» Static functions for creating the class instance:

o std unique ptr<reader ex> CreateReaderEx ( std unique ptr<iobuf Seg>, uintl6 ) -
Creates the class instance for a sequential memory buffer.

o std unique ptr<reader_ex> CreateMemReaderEx( membuf&, uint8 ) - Creates the class
instance for a memory buffer.

* The methods for managing reading of the model tree and partial reading of the model

objects:

o void ReadObjectCatalog() - Read the model table of contents.

o TapeBase * ReadObjectByPosition ( const ClusterReference & ) - Read an object by its
position in the buffer.

© bool SetReadPosition ( ClusterReference & ) - Set reading position.

o const c3d::IModelTree * GetModelTree() const - Get a pointer to the model tree.

© bool IsFullRead() - Get an indicator of full reading of the current object (whether the
current object is read in the whole).

o void SetFullRead( bool ) - Set an indicator of full reading of the current object (read the
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current object in the whole).
* The method to get reading errors:
o uint32 GetLastError() - Get reading errors.

Scoped progress indicator for reading classes

The class ScopedReadProgress implements a progress indicator in the scope for classes of
model reading. It creates a child progress indicator in the scope for the current instance of reader or
reader_ex.When exiting the scope, the current progress indicator is released and the parent progress
indicator is set.

The class defines an operator for accessing the current progress indicator:

ProgressBarWrapper * operator()().

0.10.2.4. Read-write stream

The class rw provides reading and writing the model in the data buffer (in a file space) in the
compact format. It inherits from the classes reader and writer.

The class implements a static function for creating the class instance:

rw_ptr CreateMemWriter( membuf &, uint8 ).

0.10.2.5. Model tree

The classes for the model tree are defined in the file 10 _tree.h.

A tree node data is declared as a structure MbItemData.

The class IModelTreeNode defines an interface for a tree node, which can have several
descendants, and is able to write itself to the stream and read itself from the stream.

The class IModelTreeNode contains ordered arrays of pointers to the immediate descendants and
the immediate ancestors of the node.

The class IModelTreeNode declares the methods:

* std::set<const IModelTreeNode*>& GetParents() - Access to the immediate node ancestors.

* const std::set<const IModelTreeNode*>& GetParents() const - Access to the immediate
node ancestors.

* std:set<const [ModelTreeNode*>& GetChildren() - Access to the immediate node
descendants.

* const std::set<const [ModelTreeNode>& GetChildren() const - Access to the immediate
node descendants.

* void AddParent( IModelTreeNode* parent ) - Add an ancestor.

* void AddChild( IModelTreeNode* child ) - Add an descendant.

* MbltemData& GetData() - Access to the node data.

* const MbltemData& GetData() const - Access to the node data.

* ClusterReference& GetPosition() - Access to the position of the node reading/writing.

*  bool PartialRead() - Check whether to read the node partially. While separate reading an
object there can be a need to read some data from its parent. In this case the parent object is
read partially and has a corresponding flag.

* void SetPartialRead ( bool partial ) - Set an indication of full or partial node reading.

* writer& operator >> ( writer & ) - Write the node to the stream.

* reader & operator << ( reader& ) - Read the node from the stream.

The class IModelTree defines an interface for a generic model tree, which is used for creating,
writing and reading of the model table of contents in the memory buffer.

The class defines types of callback functions:

* FilterNodesFunc - The type of a function for selecting tree nodes by filters.

* NodeToAddFunc - The type of a function for determining, whether to add the object to the
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model tree, and for filling the node data.

The class IModelTree defines a enumeration TreeType for tree types:

* mtt Model - Tree contains a standard model (MbModel object).
* mtt Embodiment - Tree contains embodiments.

The class declares the methods:

TreeType GetType() const - Get the tree type.

void SetType( TreeType type ) - Set the tree type.

void AddNode ( const TapeBase*, const ClusterReference& ) - Add a node to the tree.

void CloseNode( const IModelTreeNode* ) - Notification about the end of current node
writing/reading (the function must be called when the read/write of the given node is
complete).

std_unique ptr<const IModelTree> GetFilteredTree ( const std::vector<MbltemData>&
filters ) - Build a tree with nodes, selected by filters. For a tree of mtt Embodiment type, the
function works with the first embodiment.

std_unique ptr<const IModelTree> GetFilteredTree ( std::vector<const
IModelTreeNode*>& nodes ) - Build a tree for given nodes. Not applicable to a tree of
mtt Embodiment type (in this case, returns NULL).

const IEmbodimentTree* GetEmbodimentsTree() const - Get pointer to the embodiments
tree. Return NULL if not applicable (in case of tree of mtt_Model type).

void SetNodeToAddFunction( NodeToAddFunc callback ) - Define a function for selecting
a geometric object for adding to the model tree, and filling the node data.

void SetFilterFunction( FilterNodesFunc callback ) - Define a function for selecting nodes
from the model tree.

writer & operator >> ( writer & ) - Write the tree to the stream.

reader & operator << ( reader & ) - Read the tree from the stream.

Access to the tree roots. A tree node could be nested recursively (for example, an Instance
can contain an Assembly which contains another Instance which includes this Assembly).

o const std::vector<const IModelTreeNode*>& GetRoots() - Get the tree roots.

o std::vector<const IModelTreeNode*>& GetRoots() - Get the tree roots.

VERSION GetVersion() - Get the tree version.

void SetVersion( VERSION ) - Set the tree version.

static IModelTree* CreateModelTree() - Create a tree instance.

The class IEmbodimentNode defines an interface for an embodiment tree node. It contains ordered
arrays of pointers to the immediate descendants of the node in an embodiment tree.

The class declares the methods:

std_unique ptr<const IModelTree> GetEmbodiment() const - Build a tree of a model which is
contained in a given embodiment.

const MbltemData& GetEmbodimentData() const - Access to the embodiment info.

std::set<const IEmbodimentNode*>& GetChildren() - Access to the immediate node children.

const std::set<const IEmbodimentNode*>& GetChildren() - Access to the immediate node children.
void AddChild( IEmbodimentNode* child ) - Add a child.

The class IEmbodimentTree defines an interface for an embodiment tree which presents a hierarchy of
variants of model implementation (embodiments). Each node of the tree presents an embodiment.

The class declares the methods:

const std::vector<const [IEmbodimentNode*>& GetRoots() const - Access to the tree roots.
std::vector<const IEmbodimentNode*>& GetRoots() - Access to the tree roots.

0.10.2.6. Streaming objects
Model objects which can be serialized (represented as a sequence of bytes) are called streaming objects.
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Classes of streaming objects inherit from the base class _TapeBase, which is defined in the file tape.h.

Streaming objects can be registered and not registered. This determines how they should be written to
the stream. A registered object is written separately, and model objects, which refer to it, contain a
link to it. Not registered object is written inside the object, which refers to it.

Types of streaming object registration

Types of streaming objects registration defined in the enumeration RegistrableRec:

noRegistrable - Not registered object.
registrable - Registered object.

Base class of streaming objects TapeBase

The class ClassDescriptor defines a packed name of streaming class. It keeps a class name hash
and an application identifier.

Classes of streaming objects inherit from the base class TapeBase, which defines the following
methods:

RegistrableRec GetRegistrable() const - Get registration type of the streaming class.

void SetRegistrable( RegistrableRec regs ) - Set the registration state of the streaming
class.

ClassDescriptor GetClassDescriptor( const_VersionContainer & ) - Get the class descriptor.
const char * GetPureName( const VersionContainer & ) - Get the class name.

bool IsFamilyRegistrable() const - Whether the object belongs to a registrable family.

0.10.2.7. Modes of streaming operations
Modes of streaming operations described in the enumeration io::mode flags in the file

10 _buffer.h:
* in - Open stream for reading.
* out - Open stream for writing.
* trunc - Open existing file and clear its content.
* speedOnClose - Sort while closing.

dellfEmpty - Delete file if it is empty.
delOnClose - Delete file while closing.

recovery - Recovery mode.
appSpecial - An auxiliary flag of application.
createNew - Create a new file. An error is generated if the file already exists.

createAlways - Create a new file. If the file already exists, then it is to be rewritten.
openExisting - Open an existent file. An error is generated if the file does not exist.
openAlways - Open an existent file. If the file does not exist, a new file is created.
truncExisting - Open the file with clearing of its content.

0.10.2.8. Stream states
Flags of stream state are defined in the enumeration state in the file io buffer.h:

good - Everything is all right (no bits are set).
eof - The end of the file.

outOfRead - Out of limits of the file.

outOfMemory - Failed to allocate requested memory.
fail - Input-output error.

badData - Incorrect file structure.

notFound - File not found.

accessViolation - Access is denied.
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* cantOpenStore - Can't open the storage.

* cantCreateStore - Can't create a storage.

* badSig - There is no signature or the signature is wrong.

* cantReadCatalog - Can't read the storage catalog.

» cantWriteCatalog- Can't write the catalog of the storage.

e cantFind - Can't find a file in the catalog.

* cantRead - Can't read the file.

* cantWrite - Can't write the file.

* badClassld - The class identifier was not find in the database.

* doubledClassld - Attempt for repeated registration of the class identifier.

* verViolation - The file version is older than the task version.

* hardFail - File operation error.

* closed - The buffer is closed.

* writeProtect - The "Read only" attribute is set to the file.

* cantWriteObject - Can't write the object. (the stream version is newer than the new
objects class occurrence version).

* underflow64to32 - Can't read file with 64-bit data in 32-bit task (loss of upper word
uint32 while reading uint64 in 32-bit task).

* encrypted - The file is protected or encrypted.

* skippedUnknown - Partial read of the file in the extended format (unknown objects
skipped).

* readAborted - The file reading aborted by user.

* allMask - All errors.

0.10.3. Working with streaming buffer

0.10.3.1. Cluster

Cluster is a continuous memory region (a sequence of bytes), which is described by the class
Cluster in the file i0_buffer.h.

The class contains the cluster start (shift - for disk clusters, address - for memory) and the cluster
length in bytes.

The class implements the methods for accessing the cluster data:

* uintl6 len() - Get the cluster length.

* size t off() - Get the cluster start field.

e constuint8 * ptr() - Get the cluster start as an address.

* uint8 * getMemPointer() - Get the cluster start as an address.

* void clear() - Clear the cluster.

* void AllocFile( size t beg, uintl6 len) - Memorize the shift in file and the bytes count.

* void SetClusterOffset( size t off) - Set the cluster start.

* void SetClusterLength( uint16 len ) - Set the cluster length.

» static size t SizeOf( VERSION version ) - Size of the cluster data in the stream for a given
version.

0.10.3.2. File space

File space is a set of clusters. File space is described by the class FileSpace in the file
io_buffer.h.
The class contains the array of cluster indexes and the number of used bytes in the last cluster.
The class implements the methods for accessing the array of cluster indexes:
* size t Count() - Get the number of elements in the array of cluster indexes.
* void Flush() - Set the number of elements in the array to zero.
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void Removelnd( size t ) - Delete an element from the array.

size t* Add() - Add an element to the end of the array.

size t* Add( constsize t & ) - Add a given element to the end of the array.

void SetSize( size t, bool ) - Set the new array size.

void Reserve( size t ) - Reserve space for a given number of elements.

bool IsExist( size t & ) - Return true, if the element found.

size_t FindIt( size t & el ) - Find an index of the element (if not found, return -1).
size t * InsertInd( size t index, const size t & el ) - Insert an empty element before the
given one.

const size_t * GetAddr() - Get the address of the beginning of the array.

size t * AddItems( size tn ) - Add n elements to the end of the array.

size t & operator []( size t loc ) - Access operator by index.

uintl6 & rest() - Get the number of used bytes in the last cluster.

0.10.3.3. Read/write position

The class ClusterReference describes the position in the cluster for reading/writing. It is defined
in the file io_buffer.h.

The class contains the cluster index in the array of cluster indexes if the buffer iobuf Seq and the
offset in this cluster.

0.10.3.4. Streaming sequential buffer

The class iobuf Seq describes streaming buffer, which provides only sequential writing/reading
(the base class). The class iobuf Seq and its inheritors serve for reading/writing operations in the
interest of stream (the class tape). The class is defined in the file i0_buffer.h.

The following terms are used:

Storage — a disk file or a memory region.
File - a file space inside a storage.

The main class data:

FileSpace sys - ”system” file space. Opens in the constructor of the class tape.

PArray<FileSpace> files - An array of file spaces, which are contained in iobuf Seq. The first
element of the array is always an address of sys.

uint32 stateFlag - The buffer state.

VERSION storageVers - The storage version.

VERSION curFileVers - The version of the current open file space (stream). In general case the
storage version and a version of any file space in it may be different.

uint8 bufferMode - Mode in which the buffer can operate.

uint8 curFileMode The opening mode of the current file. In general case the storage mode
and the mode of open file in this storage can be different. Constraint - if the buffer mode is
10::in, then an attempt to open the file for writing (io::out) doesn't result in opening.

uint8 * base — A pointer to the beginning of the buffer in memory.

uint8 * ptr - A pointer to the next symbol in memory.

uint8 * end - A pointer to the end of buffer in memory. When working with the disk,
pointers are set to a fixed memory block the sections of file are loaded to while reading.
When working with the memory, membuf sets them to the memory allocated for the cluster.

The main methods of the class:

Access to the array of the clusters:

o void Reserve( size tn, bool addAdditionalSpace ) - Reserve space for a given number of
elements.

o void Flush() - Set the number of elements to null.

o void HardFlush() - Free the whole memory.

o void Adjust() - Free the unnecessary memory.
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Cluster * Add() - Add an element to the end of the array.
Cluster * Add( const Cluster & ) - Add a given element to the end of the array.
size_t Count() - Get the number of elements in array.
Cluster & operator []( size t) - Access by index operator.
*  Access to file spaces:
o void ReserveFiles( size t n, bool addAdditionalSpace ) - Reserve space for a given number
of FileSpace.
o ClusterReference getCurrentClusterPos() - Get current position in the buffer.
o FileSpace & sysFile () - Get access to the system file.
o FileSpace * openedFile() - Get access to the open file.
* Access to versions:
o void SetVersionsByStorage() - Set the current version to be equal to the storage version.
o VERSION MathVersion() - Return the main version (version of the mathematical kernel).
o 448 AppVersion( size t) - Return the additional version (version of the target application).
o const VersionContainer & GetVersionsContainer() - Get the buffer versions.
o VERSION GetStorageVersion() - Get the storage version.
o  VERSION GetFormatVersion() - Get the format version.
o void SetFormatVersion ( VERSION ) - Set the format version.

O O O O

0.10.3.5. Streaming buffer with arbitrary access

The class iobuf describes a streaming buffer with arbitrary access (the base class). It inherits
from the class iobuf Seq and extends its functionality with the ability to delete and overwrite file
spaces. It is defined in the file i0_buffer.h.
The class contains the file space with the list of freed clusters. When a file space is deleted, all its
clusters are moved here. While writing, when it is necessary to allocate the new cluster, this array is
firstly checked for availability of free clusters. Clusters in 'freed' are always ordered by shift from
the beginning of the file space.
The class methods:
* bool open ( FileSpace &, uint8, const VersionContainer &, bool fullCheck = true ) - Open
the file space if it is one's own file. The flag fullCheck = false switches off excessive checks
(for the sake of performance).

* bool del( FileSpace & ) - Free space allocated for the file space.

* bool truncate( FileSpace &, size t) - Truncate the file space.

* bool detach( FileSpace & ) - Detach the file space from the buffer.

* bool speedOnClose() - Whether should be ordered while closing.

* void speedOnClose( bool ) - Set the flag of ordering while closing.

* void free( size t) - Free the cluster.

0.10.3.6. Memory streaming buffer

The class membuf implements memory stream buffer. It inherits from the class iobuf. The class
is defined in the file io_memory_buffer.h.

Memory stream buffer is intended for using in read and write streams. Besides the instruments
needed for the buffer, it has functions for packing to a contiguous memory block, that enables
transferring data to another application via the memory.

The class contains the array of file spaces, which stores all used file spaces except 'sys' defined in
iobuf Seq. When using the extended format, objects of each level are saved to a separate file space.
Index of a file space in the array corresponds to the level of the object in the model.

The main class methods:

* bool isEmpty() - Whether the buffer is empty.
* size t toMemory( const char *& m, size t addSize = 0 ) - Write to contiguous memory. If
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m != 0 (memory is already allocated), then addSize is equal to memory size, if m = 0, then
addSize defines a number of bytes to be added at the beginning and zeroed.

* bool fromMemory( const char * ) - Read from the contiguous memory.

* size t getMemLen() - Compute necessary length of the contiguous memory block for a
buffer.

* void clean() - Clear the buffer.

* void closeBuff() - Close the buffer.

0.10.3.7. Reading and writing memory buffer

The functions for writing a contiguous memory buffer to a disk file and reading to contiguous memory
buffer from a disk file are defined in the file i0_memory_buffer.h.
Reading to a contiguous memory buffer from a disk file:
* 1obuf & createiobuf( const TCHAR * fileName ).
Writing a contiguous memory buffer to a disk file:
*  bool writeiobuftodisk( const TCHAR * fileName, membuf & buf’).

0.10.4. Version container

The type VERSION defines a version. It is defined in the file system_types.h.
The class VersionContainer defines a container for versions of geometric model objects. It
implements the following main methods:
VERSION GetMathVersion() - Get the main version (the mathematical kernel version).
VERSION GetAppVersion ( size t ind ) - Get the additional version (the target application
version).
void Flush() - Flush the container.
void SetVersion( size t index, VERSION ver ) - Set the version by index.
size t ToMemory( const char *& ) - Write the container to the memory block.
size t FromMemory( const char * ) - Read the container from the memory block.
The class VersionContainer is defined in the file io_version_container.h.
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P.1. CONVERTING OF POLYGONAL MODELS

C3D B-Shaper lets you work with polygonal models in MCAD, AEC, BIM, and other CAD applications by
converting the models to boundary representation (b-rep) bodies. Polygonal models are the typical result
from 3D scanners and non-CAD 3D modeling software, such as those used to develop movies and games. B-
rep is the primary method of representing 3D models in geometric software such as CAD.

*&&

The key applications for programs using C3D B-Shaper include the following:
* Product Catalog Conversions — download polygonal models from online libraries, and then turn them
into CAD models

* CAE Post-processing — process the results of topological optimization from CAE systems
* Enhancing Polygonal Models — smooth grids, decimate surfaces, apply compression algorithms, and

SO Oon.

B-Shaper’s unique algorithm first segments meshes by dividing sets of polygons into subsets (segments),
which become prototypes for probable faces. In the next step, selected areas are recognized as elementary
surfaces (planes, cylinders, cones, spheres, or tori), revolution surfaces or NURBS surfaces.

Intersection curves are calculated between adjacent segments, and then these curves become the basis for
constructing edges of the body’s faces.

Through its API, B-Shaper operates in two modes: automatic and interactive. It should be noted that working
in automatic recognition mode is generally not suitable for models obtained as a result of 3D scanning or
topological optimization. This mode is intended for use in polygonal models, which are based on some
models created in CAD applications.
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P.1.1. Automatic shell recognition mode by polygon mesh

The C3D B-Shaper automatic conversion interface is represented by two functions: ConvertMeshToShell()
u ConvertCollectionToShell().
The method
MbResultType ConvertMeshToShell( MbMesh & mesh,
MbFaceShell *& shell,
const MbMeshProcessorValues & params = MbMeshProcessorValues() )
performs shell creation in the boundary representation (B-Rep), corresponding to the model specified by the
polygonal mesh. The module algorithm automatically recognizes and reconstructs the faces corresponding to
elementary surfaces (plane, cylinder, cone, sphere, torus), revolution surfaces or NURBS surfaces.
Method input parameters are:
* mesh — polygonal mesh of the model;
* params — conversion settings.

The output parameter of the method is shell — the constructed shell.

If the algorithm works successfully, the method returns rt_Success, otherwise the method returns an error
code from the MbResultType enumeration.

The method is declared in the action b_shaper.h file.

The conversion settings include the recognition tolerance value, i.e. the maximum allowable distance from
the vertices of the polygonal mesh within the boundaries of this segment to the recognized surface. This
tolerance can be absolute or relative: when using relative tolerance, the deviation of the faces of the body
from the grid is checked with respect to the size of the model. Also, the user has the option of switching
recognition modes, which allows you to control the types of surfaces during reconstruction. These
parameters are in the fields of the MbMeshProcessorValues class, which contains:
+ useRelativeTolerance — relative tolerance flag;
* tolerance — recognition tolerance;
« surfReconstructMode — surface recognition mode, from the listing:
1. srm_All — build all surfaces;
2. srm_NoGrids — do not build surfaces based on triangulation;
3. srm_CanonicOnly — build only elementary surfaces;
4. srm_Default — default mode.

The method
MbResultType ConvertCollectionToShell ( MbCollection & collection,
MbFaceShell *& shell,
const MbMeshProcessorValues & params = MbMeshProcessorValues() )

performs shell creation in the boundary representation (B-Rep) corresponding to the collection of elements
containing the polygonal mesh. The module algorithm automatically recognizes and reconstructs the faces
corresponding to elementary surfaces (plane, cylinder, cone, sphere, torus).
Method input parameters are:

* collection — collection of elements containing the polygonal mesh;

* params — conversion settings.
The output parameter of the method is shell — the constructed shell.
If the algorithm works successfully, the method returns rt_Success, otherwise the method returns an error
code from the MbResultType enumeration.
The method is declared in the action_b_shaper.h file.

The test application builds the shell in the boundary representation using the menu command
"Create->Solid->Based on a mesh-> Convert to the solid with surface recognition".
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P.1.2. MbMeshProcessor class — shell creation based on a polygon mesh
with user settings

Advanced management of segmentation and surface recognition processes is provided by the
MbMeshProcessor class interface.

class MbMeshProcessor {

public:

// Creating a processor instance using a collection of items.
MbMeshProcessor * Create( const MbCollection & collection );

// Destructor

~MbMeshProcessor();

// Recognition tolerance.

void SetRelativeTolerance( double tolerance );

void SetTolerance( double tolerance );

double GetTolerance() const;

// Mesh healing.

void SetUseMeshSmoothing( bool useSmoothing );

// Mesh segmentation.

const MbCollection & GetSegmentedMesh();

MbResultType SegmentMesh( bool createSurfaces = true );

void ResetSegmentation();

void UniteSegments( size_t firstSegmentldx, size t secondSegmentldx );
MbResultType SegmentMeshBySeparators( const std::vector<std::vector<uint>> & sep );
// Surface recognition.

void SetReconstructionMode( MbeSurfReconstructMode mode );

void FitSurfaceToSegment( size t idxSegment );

void FitSurfaceToSegment( size t idxSegment, MbeSpaceType surfaceType );
const MbSurface * GetSegmentSurface( size t idxSegment ) const;

// Building a B-Rep model.

MbResultType CreateBRepShell( MbFaceShell *& pShell );

b
The class description is in the action_b_shaper.h file.
Futher, more detailed descriptions of the methods of this class will be considered.

P.1.3. Recognition tolerance

One of the key settings for converting a polygonal mesh into a model with a boundary representation is the
value of recognition tolerance. The tolerance of the method is determined by the maximum allowable
deviation of the recognized surfaces from the vertices of the polygonal mesh. The user can set the tolerance
required in the calculations, or the default value will be used. In the case when the parameter of the deviation
of the faces from the grid is not known in advance, you can use the relative tolerance, which will be
calculated based on the size of the original body. Thus, in the case of an unsatisfactory result of the
algorithm, the user can influence it by changing the recognition tolerance parameter.

Several functions of the MbMeshProcessor class are used to control the tolerance value.

The method
void SetRelativeTolerance ( double tolerance )
sets the value of relative tolerance. When using relative tolerance, the deviation of the faces of the body from
the grid is checked relative to the dimensions of the current grid. The input parameter to the method is:

* tolerance — relative tolerance value.
To obtain an absolute recognition error, the tolerance value will be multiplied by the diagonal of the
dimensional cube of the polygonal mesh or a collection of model elements. Thus, for a given relative
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tolerance equal to 1.0, the value of the absolute tolerance will be calculated based on the size of the model.

The method
void SetTolerance ( double tolerance )
sets the absolute tolerance of surface recognition and expansion of mesh segments. The input parameter to
the method is:
* tolerance — absolute tolerance value.
This method must be called before calling the SegmentMesh() method. The default absolute accuracy is 0.1.

The method

double GetTolerance () const

transmits the value of the current absolute tolerance used in recognizing surfaces and expanding grid
segments.

The method returns the absolute tolerance by a double type value.

P.1.4. Polygon mesh segmentation editing

Often, polygon mesh models, being the result of 3D scanning, have a complex internal structure with the
presence of "noise" - random outliers of points outside the dimensions of the face. The transformation of
such grids implies a denser interaction with the user, since automatic recognition is difficult. Several tools
are provided for correcting segmentation results.

The method
MbResultType SegmentMesh ( bool createSurfaces = true )
performs segmentation of the given polygon mesh.
The input parameter of the method is:
* createSurfaces — flag using for creating surfaces on segments.
If the algorithm works successfully, the method returns rt_Success, otherwise the method returns an error
code from the MbResultType enumeration.

The method
void UniteSegments (  size t firstSegmentldx,
size t secondSegmentldx )
merges two segments in the current polygon mesh segmentation.
Method input parameters are:
* firstSegmentldx — index of the first segment to merge;

* secondSegmentldx — index of the second segment to merge.
The result of the union is available through the collection returned by the method GetSegmentedMesh().

The method

MbResultType SegmentMeshBySeparators ( const std::vector<std::vector<uint>> & separators )

performs segmentation of the polygonal mesh by segment delimiters.

The input parameter of the method is:
* separators — an array of separators, each of which contains a path along the vertices of the grid whose
edges separate the segments.

If the algorithm works successfully, the method returns rt_Success, otherwise the method returns an error

code from the MbResultType enumeration.
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P.1.5. Surface reconstruction on a segment

When using the C3D B-Shaper, developers can reconstruct a surface of a certain type on a segment. The
following methods are used to control surface recognition.

The method

void FitSurfaceToSegment ( size t idxSegment )

recognizes the surface by a grid segment with a given index and fits it into the segmentation. A recognized
surface can be obtained by calling the GetSegmentSurface() method. The input parameter idxSegment
passes the index of the polygon mesh segment.

The method

void FitSurfaceToSegment ( size_t idxSegment, MbeSpaceType surfaceType )

performs the construction of a surface of a given type approximating a mesh segment with a given index. A
recognized surface can be obtained by calling the GetSegmentSurface() method. The input parameter
idxSegment passes the index of the polygon mesh segment.
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R.1. CONSTRUCTING TRIANGULATION

C3D geometric kernel constructs a polygonal representation of geometric model based on its boundary
representation. A polygonal representation contains a set of triangulations. Every triangulation approximates
a single face of the modeled object by rectangular and triangular flat plates. Polygonal representation is used
to visualize a geometric model, calculate inertial characteristics and detect collisions of model elements.

R.1.1. Triangulation Calculation Control

Methods that construct polygonal representations use MbStepData structure shown in Fig. R.1.1.1 as
their input.

E MbStepData j

stepType
sag

angle
length
maxCount

Fig. R1.1.1.

MbStepData structure is declared in mb_data.h file. MbStepData structure contains the following data:
* unsigned char stepType is the field that defines the method used to calculate parameter increments,
* double sag is the maximum allowable deviation of deflection,
* double angle is the maximum allowable deviation of tangents or normals by angle,
* double length is the maximum allowable distance between two adjacent points,
e unsigned int maxCount is the maximum number of cells per row or column of triangulation grid.
MbStepData structure controls grid density of a polygonal object, it contains all the data required to
calculate parameter increment when moving along model curves and surfaces. stepType field defines the
method used to calculate the parameter increment when moving along a curve or a surface. This field may
contain masks of MbeStepTypy enumeration declared in mb_enum.h file:
* st SpaceStep is used to visualize the geometric shape;
* st DeviationStep is used for construction operations;
* ist MetricStep is used for 3D printers;
* ist ParamStep is used to visualize the geometric shape of the objects with snapping texture to
surface parameters;
* st _CollisionStep is used to detect collisions of model elements;
* ist MipStep is used to calculate inertial characteristics.
sag parameter limits the increment of curve or surface parameter taking into account the maximum
allowable deviation from the original polygon object by deflection. angle parameter limits the increment of
curve or surface parameter taking into account the maximum allowable deviation from the original polygon
object by angular deflection of tangential curves or surface normals at two adjacent points, their separation is
equal to the increment. /ength parameter limits the increment of curve or surface parameter taking into
account the maximum allowable size of polygon element (triangle side or polygon segment). maxCount
parameter limits the increment of curve or surface parameter taking into account the maximum allowable
number of splittings per row or column of the triangulation grid.
Methods that construct polygonal representations use MbFormNote structure shown in Fig. R.1.1.2 as
their input.
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E MbFormNote j

wire
grid
seam

Fig. R.1.1.2.

MbFormNote structure is declared in mb_data.h file. MbFormNote contains the following data:
*  bool wire is the flag for constructing the polygonal object,
*  bool grid is the flag for constructing the polygonal object,
*  bool seam is the flag indicating that seam edges are not ignored.

MbFormNote structure defines the method for constructing the polygonal object: If wire==true then the
polygonal object is filled with broken lines, if grid==true then the polygonal object is filled with
triangulations. seam parameter defines the method for representing seams in the polygonal object: If
seam==true then triangulation is not closed by seams and seam edges are treated as ordinary edges. Their
points are considered to be edge in triangulation and polygons are constructed for them, if seam==false then
triangulation is closed by seams and seam edges are ignored, closed triangulations are constructed and
polygons are not constructed for edges.

R.1.2. Constructing a Polygonal Object

Virtual method for geometric model objects
Mbltem *
Mbltem::CalculateMesh ( const MbStepData & stepData,
const MbFormNote & note,
MbRegDuplicate * iReg ) const
constructs a polygon object approximating the specified object of the geometric model.
Input parameters of the method are:
* stepData are the data required to calculate approximation step,
* note is the method used to construct the polygonal object,
* iReg is the registrar of the copied objects.

In case of success, the method returns a pointer to the newly constructed object of the geometric
modelMbltem*, otherwise zero is returned.

The method is declared in item.h file and header files of Mbltem descendant files.

This method approximates model objects and creates polygonal copies having similar structures. For a
body, a wire frame or a point frame, this method will create a polygonal object MbMesh that approximates
the original object, then the method will return a pointer to the newly created object. Each grids[i]
triangulation of the object MbMesh will approximate the ith face; each wires[i] polygon of the object
MbMesh will approximate the ith edge, each peaks[i] apex of the object MbMesh will approximate the ith
vertex. For a polygonal object MbMesh, this method will create a polygonal copy object. For an insertion,
this method will create the insertion with the object that will create the same method for insertion content.
For an assembly unit, this method will create the assembly unit with the objects that will create the same
method for assembly unit objects.

stepData parameter controls the density of polygonal object grid and contains all the data required to
calculate parameter increment when moving along model curves and surfaces. note parameter defines the
method for constructing a polygonal object. stepData and note parameters are described in Item R.1.1.
Triangulation Calculation Control. If note.wire==true, then the method creates a set of pointers to
mesh.wires polygons; if note.grid==true, then the method fills a set of pointers to mesh.grids triangulations
(for faces and surfaces), a set of pointers to mesh.wires polygons (for edges) and a set of pointers to
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mesh.peakes apexes (for vertices).

iReg parameter may be equal to zero. This parameter is used to provide nested methods data on already
processed objects.

In Figure R.1.2.1, you can see a polygonal body object that was constructed with the following
parameters: note.wire==false, note.grid==true. This object contains triangulations, polygons and apexes. In
Figure R.1.2.2, you can see a polygonal body object that was constructed with the following parameters:
note.wire==true, note.grid——false, the object contains only polygons.

note.grid = true note.grid = false

note.wire = false nofe.wire = true

Fig. R.1.2.1. Fig. R.1.2.2.

In Fig. R.1.2.3, you can see a polygonal object of an assembly unit that was constructed with the
following parameters: note.wire==false, note.grid==true. This object consists of an assembly unit of
polygonal objects that approximate the parts.

Fig. R.1.2.3.

The method is used to visualize objects of a geometric model. You can easily transform polygonal objects
and quickly find an intersection with a straight line. It is a polygonal copy of geometric model object that is
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displayed on the screen, and the original object remains offscreen.

R.1.3. Adding a Polygonal Object

Virtual method for geometric model objects
bool
Mbltem::AddYourMesh ( const MbStepData & stepData,

const MbFormNote & note,
MbMesh & mesh ) const
constructs and adds its own polygonal copy to received mesh polygonal object.

Input parameters of the method are:

e stepData are the data required to calculate approximation step,

* note is the method used to construct the polygonal object.

The output parameter of the method is mesh polygonal object.

In case of success, the method returns true.

The method is declared in item.h file and descendant header files Mbltem

The method approximates model objects by polygonal copies and adds them to the received mesh
original object. For an insertion, the method will create a polygonal copy of insertion content, transform it to
a global coordinate system and then will add it to received mesh object. For an assembly unit, the method
will create a polygonal copy of assembly unit content, transform it to a global coordinate system and then
will add it to mesh original object.

By analogy with CalculateMesh method, stepData parameter controls the density of polygonal object
grid, and note parameter defines how to construct the polygonal object. stepData and note parameters are
described in Item R.1.1. Triangulation Calculation Control. In contrast to the above method, this method
creates a single polygon object for complex objects. In Fig. R.1.3.1, you can see a polygonal object for the
assembly unit shown in Figure R.1.2.3. This polygonal object was constructed using the considered method.

Fig. R1.3.1.

R.1.4. Constructing Polygons for an Object

Virtual method for three-dimensional geometric objects
void
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MbSpaceltem::CalculateWire ( double sag,
MbMesh & mesh )
fills received mesh polygonal object with the set of polygons approximating the geometric object.
Input parameter of the method is:
* sag is the maximum allowable deviation from the original object in terms of deflection.

The output parameter of the method is mesh polygonal object.

The method is declared in space_item.h file and MbSpaceltem descendant header files.

The polygonal object is described in Item O.8.5. MbMesh Polygonal Object. sag parameter determines
the maximum allowable distance between the object and the broken line that goes by the points of polygons.
The method creates only a set of pointers to mesh.wires polygons (broken lines).

The method uses a single polygon to approximate a curve. As to contours, this method uses several
polygons, each contour approximates a corresponding segment of the contour. In Fig. R.1.4.1, you can see a
curve and its polygonal object consisting of one polygon.

Figure R.1.4.1.

In order to approximate a surface, the method uses a set of polygons that go through u lines, v lines and
along a surface border. In Fig. R.1.4.2, you can see a polygonal object of a surface that consists of several
broken lines.

polygons

Fig. R.1.4.2.

The method uses a set of broken lines to approximate a body. These lines go inside a face along u lines
and v lines of face surfaces. A set of broken lines is also used to approximate the curves at which body edges
are based. In Fig. R.1.4.3 (right), you can see a polygon object for the body.
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Figure R.1.4.3.

For objects of the geometric model, the method works exactly as CalculateMesh metod if
stepData.step Type==ist_SpaceStep, stepData.sag==sag, note.wire==true and note.seam==true.

R.1.5. Constructing Triangulation for a Face

Method
void
CalculateGrid ( const MbFace & face,
const MbStepData & stepData,
bool edgePoints,
MbGrid & grid,
bool dualSeams = true )
approximates a face using triangular and quadrangular plates.
Input parameters of the method are:
¢ face is the face itself,
* stepData are the data required to calculate approximation step,
* edgePoints is the flag indicating that spatial points will be used,
*  dualSeams is the flag for processing seams.
grid triangulation is the output parameter of the method.
This method is declared in tri_face.h file.
stepData parameter manages triangulation density, it contains data used to calculate the increment for
moving along face surface. stepData parameter is described in Item R.1.1. Triangulation Calculation Control.
For various values of stepData.stepType, various fields of grid triangulation are filled. If stepData.stepType
contains ist MipStep mask, then grid.params set is created. If stepData.stepType contains ist CollisionStep
or ist_ParamStep mask, then grid.params, grid.points and grid.normals sets are created. In all other cases,
grid.params and grid.points sets are created.
In Fig. R.1.5.1, you can see triangulation of a flat face with ist_SpaceStep mask.
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Fig. R.1.5.1.

In Fig. R.1.5.2, you can see triangulation of a curved face with ist SpaceStep mask.
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Fig. R.1.5.2.
When polygonal objects are constructed, the method is used by CalculateMesh and AddYourMesh

methods if note.grid==true.

R.1.6. Constructing Triangulation for a Body

Method

void
CalculateGrid ( const MbSolid & solid,

const MbStepData & stepData,
RPArray<MbGrid> & grids )

constructs a set of triangulations for the faces of a body.

Input parameters of the method are:

* solid is the body,

* stepData are the data needed to calculate approximation increment.
grids set is the output parameter of the method.
This method does not return any value.
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The method is declared in mip_solid area volume.h file.

The method approximates faces of solid body using grids triangulations. When the method is called,
meshs set should be empty. When the method is called, grids set should be empty. Each ith face of solid
body has its own grids[i] object.

stepData parameter controls grid density of the polygonal object, it contains all data required to calculate
parameter increment when moving along curves and surfaces of the bodies. stepData parameter is described
in Item R.1.1. Triangulation Calculation Control.

R.1.7. Constructing Polygonal Objects for a Set of Bodies

Method
void
CalculateGrid ( const RPArray<MbSolid> & solids,
const MbStepData & stepData,
RPArray<MbMesh> & meshs )
constructs a set of polygonal objects for a set of bodies.
Input parameters of the method are:
¢ solids is the set of bodies,
* stepData are the data needed to calculate the approximation increment.
meshs set is the output parameter of the method.
This method does not return any value.
The method is declared in mip_solid_area volume.h file.
The method approximates solids bodies using meshs polygonal objects. When the method is called, meshs
set should be empty. Each solids[i] body has a corresponding newly constructed meshs][i] object.
stepData parameter controls grid density of the polygonal object, it contains all data required to calculate
parameter increment when moving along curves and surfaces of the bodies. stepData parameter is described

in Item R.1.1. Triangulation Calculation Control.
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R.2. CONSTRUCTING FLAT PROJECTIONS

C3D geometric kernel uses a wireframe model to construct a flat projection of the modeled object. We'll
create a wireframe model from a boundary representation of the geometric model by taking edges and adding
their outlines instead of faces. The outlines go through faces and divide them into parts that are visible or
invisible from part observation point. Flat projections are more informative if all edges and outlines invisible
from the observation point are hidden in wireframe model.

R.2.1. Data Required to Construct Flat Projections

MbLump structure shown in Fig. R.2.1.1 is used as method input to construct flat projections to present
the bodies.

[ MbLump ]

solid

from
component
identifier

Fig. R2.1.1.

MbLump structure is declared in lump.h file. MbLump contains a pointer to solid body, a matrix that
transforms the body from from local coordinate system, component and identifier body identification
parameters.

MbProjectionsObjects class shown in Fig. R.2.1.2 is used by the method to construct flat projections in
order to display supplementary objects.

| ProjectionsObjects I

annCurves
annotations
symbolObjects
pointsData
curvesData

Fig.R.2.1.2.

MbProjectionsObjects class is declared in map create.h file. MbProjectionsObjects contains the
following data:
*  TPointer<PArray<MbAnnCurves>>  annCurves are annotation curves,
*  TPointer<RPArray<MbSimbolthThread View> > annotations are subsidiary objects,
*  TPointer<RPArray<MbSymbol> > symbolObjects are designations,
*  TPointer<RPArray<MbSpacePoints> > pointsData are points,
*  TPointer<RPArray<MbSpaceCurves> > curvesData are curves.
MDbVEF Vestiges structure shown in Fig. R.2.1.3 is used to pass flat projection construction results.
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Fig. R.2.1.3.

MbVEFVestiges structure is declared in map vestiges.h file. MbVEFVestiges structure contains
grouped flat projections of object elements. Each element in projection group contains a constructed
projection, a pointer to projection parent object, data on projection visibility and other data on this
projection. MbVEF Vestiges structure contains the following groups:

PArray<MbVertex Vestige> vertex Vestiges is a set of vertex projections.
PArray<MbEdge Vestige> edgeVestiges is a set of edge projections,
PArray<MbFace Vestige> faceVestiges is a set of face projections,
PArray<MbAnnotation Vestige> annotate Vestiges is a set of annotation object projections,
PArray<MbSymbolVestige>  symbolVestiges is a set of symbol projections,
PArray<MbVertex Vestige> pointVestiges is a set of point projections,
PArray<MbEdgeVestige> curveVestiges is a set of curve projections.

R.2.2. Constructing Model Flat Projection

Method

void

GetVestiges ( const MbPlacement3D & place,

double znear,
const RPArray<MbLump> & lumps,
const MbProjectionsObjects & objects,

MbVEF Vestiges & result,
bool invisible,
VERSION version )

constructs flat projection for a set of bodies and other objects.
Input parameters of the method are:

place is the projection plane,

znear is observation point parameter,

lumps are the projected bodies in local coordinate systems,

objects are all other projected objects,

invisible is a flag meaning that invisible lines are constructed,

version is the version of the constructed object, it is the latest version of
Math::DefaultMath Version().

The output parameter of the method is result, it is the structure containing projection data.

The method does not return any value.

The method is declared in map_create.h file.

XY plane of place local coordinate system is the projection plane.

znear parameter defines image type. If znear=0, then a parallel projection of the objects is constructed.
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lumps parameter (Fig. R.2.1.1) contains the bodies and matrices of their transformation from the local
coordinate system. objects parameter (Fig. R.2.1.2) contains auxiliary objects required to finalize the
projection: auxiliary points, curves, designations and annotation objects. invisible parameter determines
whether it is required to construct invisible lines. In some cases, the method works considerably faster if the
construction of invisible lines is canceled.

In Fig. R.2.2.1, you can see a body, its projection lines to a plane parallel to the screen are shown in
Fig. R.2.2.2. In Fig. R.2.2.3, you can see only visible lines of the projection of the body shown in
Fig. R.2.2.1.

Fig. R2.2.1. Fig. R.2.2.2. Fig. R.2.2.3.

The last parameter of the method is used to support previous construction versions.
Method

void

VisualLinesMapping ( const MbPlacement3D &  place,
double znear,
const RPArray<MbLump> & lumps,
MDVEF Vestiges & result,
bool invisible = true )

constructs a planar projection for a set of bodies. It is similar to GetVestiges method, the difference is the
absence of objects auxilliary objects.

R.2.3. Constructing Polygonal Projections of Bodies

Method
void
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HiddenLinesMapping ( const RPArray<MbLump> &  lumps,

const MbPlacement3D & place,
double znear,
double sag,

PArray<MbPolygon3DSolid> & visibleEdges,
PArray<MbPolygon3DSolid> & hiddenEdges,
PArray<MbPolygon3DSolid> & visibleTangs,
PArray<MbPolygon3DSolid> & hiddenTangs )
constructs a polygonal projection for a set of bodies to the specified plane.
Input parameters of the method are:
* lumps are the projected bodies in local coordinate systems,
» place is the projection plane,
*  znmear is observation point parameter,
*  sag is the maximum allowable deviation by deflection.
Output parameters of the method are as follows:
» visibleEdges are polygons of visible non-smooth edges,
* hiddenEdges are polygons of invisible non-smooth edges,
* visibleTangs are polygons of visible smooth edges,
* hiddenTangs are polygons of invisible smooth edges.
The method does not return any value.
The method is declared in map_create.h file.
XY plane of place local coordinate system is the projection plane.
lumps parameter (Fig. R.2.1.1) contains the bodies and matrices of their transformation from the local
coordinate system. znear parameter defines image type. If znear=0, then a parallel projection of the objects is
constructed. MbPolygon3DSolid class contains component number and a pointer to the polygon consisting
of a set of points that should be connected in series to approximate edge projection on the plane. sag
parameter determines approximation accuracy. visibleEdges and hiddenEdges polygons are visible and
invisible polygonal projections of non-smooth edges to XY plane of place local coordinate system.
visibleTangs and hiddenTangs polygons are visible and invisible polygonal projections of smooth edges to
XY plane in place local coordinate system.

Method
void
VisualLinesMapping ( const RPArray<MbLump> &  lumps,
const MbPlacement3D & place,
double znear,
double sag,

PArray<MbPolygon3DSolid> & visibleEdges,

PArray<MbPolygon3DSolid> & visibleTangs )
constructs only a visible polygonal projection of the set of bodies to the specified plane. The method is
similar to HiddenLinesMapping mehod, but it constructs visible projections only. In some cases,
VisualLinesMapping works significantly faster than HiddenLinesMapping.

R.2.4. Constructing a Triangulation OQutline

Method
void
CalculateBoundsSItFast ( const MbGrid & grid,
const MbMatrix3D & matrix,
bool perspective,

RPArray<MbFloatPoint3D> & points )
constructs a triangulation outline.
Input parameters of the method are:
* grid is body face triangulation,
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*  matrix is a matrix that defines a gaze vector,
*  perspective is perspective representation flag.
The output parameter of the method is
points, it is a set of pointers to the points from grid.points triangulation.
The method does not return any value.
The method is declared in map create.h file.
This method is intended to construct polygonal outlines and visualize triangulation silhouette.
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R.3. CALCULATION OF INERTIAL CHARACTERISTICS

C3D geometric kernel calculates modeled object surface area, volume, center of gravity and moments of
inertia. In the general case, numerical integration is used. Volume integration is reduced to modeled object
surface integration using Gauss's theorem. Surface integration uses triangulation of a two-dimensional area
of definition of surface parameters. When the above characteristics of the model are calculated, it is possible
to include ready-to-use data for particular model elements.

R.3.1. Inertial Characteristics of a Model

InertiaProperties class shown in Fig. R.3.1.1 is used to set inertial characteristics of a model.

emp—— S

InertiaProperties

S J—

area
volume
mass
inertia
initial
moments
general
center
direction

Fig. R3.1.1.

InertiaProperties class is declared in mip solid mass inertia.h file. InertiaProperties contains the
following model data:

¢ double area is surface area,

¢ double volume is volume,

¢ double mass is mass,

* double inertia[3] are static moments in the original coordinate system,

* double initial[3][3] are moments of inertia in the original coordinate system,

* double moments[3][3] are moments of inertia in the central coordinate system,

* double general[3] are principal central moments of inertia,

e MbCartPoint3D center is the center of gravity,

*  MbVector3D direction[3] are the vectors of direction of principal axes of inertia.

When InertiaProperties class is initialized all data take zero values and gravity center coordinates are
equal to NOT_INITIAL DBL. initial moments of inertia are calculated in the coordinate system wherein the
model is described. moments moments of inertia are calculated in the coordinate system with the origin
located in center point and its coordinate axes coincide with the axes of the original coordinate system
wherein the model is described. general inertia moments are calculated in principle center coordinate
system, its origin is center point, and coordinate axes are calculated and they coincide with the model
principal axes of inertia. Products of inertia in principle coordinate system are equal to zero.

direction vectors define the direction of principal axes of inertia. If all general[i] i=1,2,3 principle
moments of inertia differ, then all direction[i] i=1,2,3 vectors are non-zero. If all principle moments of
inertia in general[7] i=1,2,3 are the same, then all direction[7] i=1,2,3 vectors are equal to zero, and any three
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mutually orthogonal vectors may be used as principle directions. If two of three principal moments of inertia
are equal, for example, general[jl==general[k], then two of the three vectors are equal to zero:
direction[j]=direction[kx]=0, and non-zero direction[i] vector defines the direction of the principal inertia
axis, its moment for other axes is different from the others, any two vectors that are mutually orthogonal and
orthogonal to non-zero direction[7] vector can be used as any two principle directions.

SolidMIAttire and AssemblyMIAttire classes shown in Fig. R.3.1.2 and Fig. R.3.1.3 provide an
opportunity to use ready-to-use data for separate model elements. These classes are declared in
mip_solid mass_inertia.h file.

E SolidMTIAttire j EAssemb]y)[IAttire j

solid assemblies
density solids
matrix matrix
properties properties
ready ready

Fig. R.3.1.2. Fig. R.3.1.3.

SolidMIAttire class contains the following data:
*  constMbSolid & solid is the body,
* double density is the density or specific gravity of unit area,
*  MbMatrix3D matrix is the matrix used to transform the body to the nearest assembly system,
* InertiaProperties * properties are specified inertial characteristics of the body, they can be equal to
zero or they may be defined not completely,
*  bool ready is the flag showing that it is not required to calculate the characteristics.
AssemblyMIAttire class contains the following data:
* RPArray<AssemblyMIAttire> assemblies is a set of assembly units at the next level,
*  RPArray<SolidMIAttire> solids are the bodies of the assembly unit,
*  MbMatrix3D matrix is the matrix used to transform the body into the nearest assembly system,
* InertiaProperties * properties are specified inertial characteristics of the assembly body, they can
be equal to zero or they may be defined not completely,
*  bool ready is the flag showing that it is not required to calculate the characteristics.

If instances of bodyMIAttire and AssemblyMIAttire classes contain non-zero properties and
ready==true then inertial characteristics of the corresponding object won't be calculated, and calculation
result will contain data from properties.

If instances of bodyMIAttire and AssemblyMIAttire classes contain non-zero properties and
ready==false, then calculation result will contain data from properties data that are not equal to
NULL_EPSILON or NOT_INITIAL DBL. Data that in properties are equal to NULL EPSILON or
NOT _INITIAL DBL will be calculated. Considered classes permit to mix calculated and assigned data.

R.3.2. Inertial Body Characteristics

Function

void

MassInertiaProperties ( const MbSolid * solid,
double density,
double deviateAngle,
InertiaProperties & properties,
IfProgressIndicator * progress =0 )

calculates body surface area, volume, mass, center of gravity and moments of inertia.
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Method input parameters are:
* solid is the body,
* density is density or specific gravity per unit area,
* deviateAngle is a parameter used to control calculation accuracy.
Output parameters of the method are:
* properties are calculated inertial characteristics,
* progress is calculation progress indicator.

This method returns no value.

The method is declared in mip_solid mass_inertia.h file.

For solid closed body, density parameter determines body density. For a non-closed body, solid density
parameter determines specific gravity of body unit area. In the general case, numerical integration is applied,
definition area of face surface parameters are triangulated. Parametric area of faces is triangulated using
CalculateGrid method described in item R.1.4. Constructing Polygons for an Object if
stepData.stepType=ist MipStep and stepData.angle=deviateAngle. deviateAngle parameter determines the
maximum allowable angle between the normals of adjacent triangles and quadrangles of surface
triangulation. deviateAngle parameter controls calculation accuracy. Calculation time depends on this value.
deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian). Please note that for
complex models small values of deviateAngle result in long calculation time.

properties inertial characteristics are described in Item R.1.4. Constructing Polygons for an Object.
progress parameter provides information about calculation progress; it may be used to terminate the
calculation.

R.3.3. Inertial Characteristics for a Set of Bodies

Function
void
MasslInertiaProperties ( const RPArray<MbSolid> & solids,
const SArray<double> & densities,
const SArray<MbMatrix3D> & matricies,
const PArray<InertiaProperties> & mpSolids,
double deviateAngle,
InertiaProperties & properties,
IfProgressindicator * progress =0 )
calculates surface area, volume, mass, center of gravity and moments of inertia for a set of bodies.
Method input parameters are:
* solids is a set of bodies,
* densities is a set of densities or specific gravities per unit area,
* matricies is the set of matrices used to transform bodies into a common coordinate system,
* mpSolids is a set of available characteristics of bodies (it may contain zeros),
* deviateAngle is a parameter used to control calculation accuracy.
Output parameters of the method are:
* properties are calculated inertial characteristics,
* progress is calculation progress indicator.
This method returns no value.
The method is declared in mip_solid _mass_inertia.h file.
densities, matricies, and mpSolids should contain a number of elements equal to the number of bodies in
solids set. The second parameter determines body density for a closed body or specific gravity of unit area
for a non-closed body. matricies parameter contains a set of matrices used to convert bodies into a
coordinate system where the calculation should to be used. mpSolids parameter contains the characteristics
of the corresponding bodies that should be used instead of calculated characteristics. Considered method can
be used to calculate inertial characteristics of assembly unit; inertial characteristics of unit elements were
previously calculated in local coordinate systems.
In the general case, numerical integration is applied, definition area of face surface parameters are
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triangulated. Parametric area of faces is triangulated using CalculateGrid method described in item R.1.4.
Constructing Polygons for an Object if stepData.stepType=ist MipStep and stepData.angle=deviateAngle.
deviateAngle parameter determines the maximum allowable angle between the normals of adjacent triangles
and quadrangles of surface triangulation. deviateAngle parameter controls calculation accuracy. Calculation
time depends on this value. deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35
(radian). Please note that for complex models small values of deviateAngle result in long calculation time.

properties inertial characteristics are described in Item R.3.1. Inertial Characteristics of a Model.
progress parameter provides information about calculation progress; it may be used to terminate the
calculation.

R.3.4. Inertial Characteristics of a Model

Function
void
MassInertiaProperties ( const AssemblyMIAttire & assembly,
double deviateAngle,
InertiaProperties & properties,
IfProgressIndicator * progress =0 )
calculates surface area, volume, mass, center of gravity and moments of inertia for the model described as
assembly unit.
Method input parameters are:
* assembly is an assembly unit that may contain precalculated characteristics,
* deviateAngle is a parameter used to control calculation accuracy.
Output parameters of the method are:
* properties are calculated inertial characteristics,
* progress is calculation progress indicator.
This method returns no value.
The method is declared in mip_solid mass_inertia.h file.
assembly parameter represents an analogue of the assembly unit containing other assembly units in local
coordinate systems and bodies with specified density in local coordinate systems. Elements of the assembly
units may have precalculated inertial characteristics and corresponding control parameters. If an element has
precalculated characteristics, then these characteristics are used in the total amount, thus reducing calculation
time.
deviateAngle parameter controls calculation accuracy. Calculation time depends on this value.
deviateAngle parameter determines the maximum allowable angle between the normals of adjacent triangles
and quadrangles of surface triangulation. deviateAngle parameter should fall within 0.01 (radian)
<=deviateAngle<=0.35 (radian). Please note that for complex models small values of deviateAngle result in
long calculation time.
properties inertial characteristics are described in Item R.3.1. Inertial Characteristics of a Model.
progress parameter provides information about calculation progress; it may be used to terminate the
calculation.

R.3.5. Calculation of Surface Area

Method
double
CalculateArea ( const RPArray<MbFace> & faces,
double deviateAngle )
calculates the surface area for a set of faces.
Method input parameters are:
» faces is the set of faces,
* deviateAngle is a parameter used to control calculation accuracy.
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This method returns the area of the specified set of faces.
The method is declared in mip_solid mass_inertia.h file.
deviateAngle parameter controls the accuracy of calculation. Calculation time depends on this value.
deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian). In the general case,
numerical integration is applied, definition area of face surface parameters is triangulated. Parametric area of
faces is triangulated using CalculateGrid method described in Item R.1.4. Constructing Polygons for an
Object if stepData.stepType=ist MipStep and stepData.angle=deviateAngle. deviateAngle parameter
determines the maximum allowable angle between the normals of adjacent triangles and quadrangles of
surface triangulation.
Method
double
CalculateArea ( const MbFace & face,
double deviateAngle )
calculates the surface area of a single face.
Method input parameters are:
e face is the face,
* deviateAngle is a parameter used to control calculation accuracy.
This method returns the area of the specified face.
This method is declared in tri_face.h file.
deviateAngle parameter controls the accuracy of calculation. Calculation time depends on this value.
deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).
Method
double
CalculateArea ( constMbSurface & surface,
double deviateAngle )
calculates surface area.
Method input parameters are:
e surface is the surface,
* deviateAngle is a parameter used to control calculation accuracy.
This method returns the area of the surface.
The method is declared in mip_solid area volume.h file.
deviateAngle parameter controls the accuracy of calculation. Calculation time depends on this value.
deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).
Method

double

CalculateAreaCentre ( const MbFace & face,
double deviateAngle,
bool byOQuter,
VERSION version,
MbCartPoint3D & centre )

calculates face surface area and the center of gravity.
Method input parameters are:
* face is the face,
* deviateAngle is the parameter that controls calculation accuracy,
*  byQuter is the parameter indicating that internal cutouts of the face should be ignored,
* version is the parameter that control calculation version.
Method output parameter: centre is the center of gravity of the face.
This method returns face area.
The method is declared in mip_solid area volume.h file.
deviateAngle parameter controls the accuracy of calculation. Calculation time depends on this value.
deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).
byOQuter parameter permits to ignore the internal cutouts of the face in the calculations. If byQuter=true, then
it is assumed that the face does not have internal cutouts. If byQuter=false, then standard calculation of the
surface area and the center of gravity are executed for the face. version parameter permits to ensure support
of previous calculation versions.
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Method
double
CalculateAreaCentre ( const MbFaceShell & shell,
double deviateAngle,
MbCartPoint3D & centre )
calculates the surface area and the center of gravity for a set of faces.
Method input parameters are:
* shell is the set of faces,
* deviateAngle is a parameter used to control calculation accuracy.
Method output parameter: centre is the center of gravity of the set of faces.
This method returns the area of the specified set of faces.
The method is declared in mip_solid area volume.h file.
deviateAngle parameter controls the accuracy of calculation. Calculation time depends on this value.
deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).

R.3.6. Calculation of Solid Volume

Method
double
CalculateVolume ( const MbSolid & solid,
double deviateAngle )
calculates body volume.
Method input parameters are:
* solid is the body,
* deviateAngle is a parameter used to control calculation accuracy.
This method returns the body volume.
The method is declared in mip_solid area volume.h file.
deviateAngle parameter controls the accuracy of calculation. Calculation time depends on this value.
deviateAngle parameter should fall within 0.01 (radian) <=deviateAngle<=0.35 (radian).
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R.4. COLLISIONS DETECTION OF BODIES

The C3D geometric kernel provides two methods to evaluate solid body collisions. The first method is
based on Boolean operation algorithms and designed for accurate evaluation of the intersection of two fixed
bodies and calculation of the intersection face edges. The second method is based on polygonal models and
designed for dynamic scenes defined by a given set of bodies. It is recommended to use the second method if
it is required to execute many evaluations for collisions of moving solid bodies in real time.

R.4.1. Detecting the Intersection of Two Bodies

The method
MbResultType
InterferenceSolids( MbSolid & solid1l, MbSolid & solid2,

std::vector<MbCurveEdge*> * edges,
std::vector<ptrdiff t> (*faceNumbers)[4])
evaluates the intersection of two bodies.
The method input parameters are:
* solidl is the first body,
* solid2 is the second body,
* edges are the body intersection edges (no edges is also a possible situation),
* (*faceNumbers)[4] is the face number container (it can be empty).

The output parameters of the method are the intersection edges of solid1 and solid2 body faces and the
numbers of intersecting faces (*faceNumbers)[4].

The method returns either rt Intersect if the bodies intersect or rt Nolntersect if the bodies do not
intersect.

The method is declared in the cdet bool.h file.

The method modifies the solid1 and solid2 body edges, so if you need to keep the bodies unchanged, then
you should pass to the method the copies received using MbSolid::Duplicate(). The bodies are modified by
cutting the edges of the bodies with intersection edges.

The returned value, rt_Intersect, means that the pair of bodies has some intersection volume or some
contact area. The function returns rt_Nolntersect if the bodies have no intersection volume. The tangency at
one point is not considered to be intersection as in this case intersection volume is zero.

If the pointer to the edges container is not NULL, then the solidl and solid2 intersection edges will be
added to the edges container.

If the pointer to the faceNumbers face number container is not NULL, then the numbers of the
intersecting faces of the first and second body correspondingly will be added to faceNumbers[0] and
faceNumbers[1]. Furthermore, the numbers of the contacting faces of the first and second body
correspondingly will be added to faceNumbers[2] and faceNumbers[3].
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R.4.2. Determining Collisions in the Set of Bodies

This collision evaluation method is used when it is required to perform a series of collision tests for the
same set of bodies that change their position in time. Fig. R.4.2.1 shows a mechanism constituting an
assembly unit with seven parts that have kinematic links. It is required to estimate the boundaries within
which the parts do not interfere with each other when the mechanism works. Fig. R.4.2.2 shows a position of
mechanism parts when they collide. The faces of bodies that contacted each other when they moved beyond
the free motion boundaries are colored red in Fig. R.4.2.2

Fig. R4.2.1. Fig. R4.2.2.

In order to control collisions for a specific set of bodies, it is required to create an instance of the
MbCollisionDetectionUtility class, and add the bodies to the collision control set using the AddItem
method. At the moment when one or several bodies change their position, the application calls the
Reposition method to provide new position to the bodies included in the set, and determines whether there is
a collision in the geometric model by calling the CheckCollisions method.

The MbCollisionDetectionUtility class controls collisions, it is declared in cdet utility.h file. The
additional data types are declared in cdet data.h.

The method
cdet_item
MbCollisionDetectionUtility:: AddItem ( const MbSolid & solid,
const MbPlacement3D & place,
cdet _app_item appltem = CDET_APP_NULL)
adds solid body to the collision control set.
The method input parameters are:
* solid is a solid body model,
* place is a local coordinate system, which determines the position of the solid body in space,
* appltem is a client application geometric object containing the body.
The method returns a collision control object descriptor.
The appltem parameter is used to identify the client application model objects when they collide. If the
appltem parameter is not defined, then identification is based only on cdet item type descriptor that was used
to register the body in the set. It is assumed that more than one MbSolid body can belong to one appltem
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object, i.e. the AddItem method can be called more than once for the same object with appltem parameter.
In this case, the bodies from the group added for the same appltem parameter are not checked for collisions
between them.

The method
cdet_item
MbCollisionDetectionUtility:: Removeltem ( cdet item cdltem )
deletes a solid body from the collision control set.
The input parameter of the method is:
* cdltem is a descriptor of the collision control object that was added earlier using AddItem method.
The method returns the object descriptor.

The method
cdet_result
MbCollisionDetectionUtility:: CheckCollisions ( cdet query cdQuery = defaultQuery )
checks for collisions between the objects in the control body set.

The input parameter of the method is:

* cdQuery is a collision data query structure.

The method returns the collision search result code.

The CheckCollisions method detects collisions between the bodies added to the control set by calling the
AddItem method. The method returns CDET RESULT Intersected, if a collision is detected in this body
set. If no collisions were detected, then the method returns CDET _RESULT Nolntersection. The cdet_result
code is the main result of the CheckCollisions algorithm. However, the cdQuery structure permits to get
more detailed data on collision detection results, and to limit or even interrupt the search when required. If
the cdQuery parameter is not defined, then the detection algorithm does not lose its time on studying all
collision details, rather it stops when the first pair of intersecting faces is found.

If two or more bodies have been added in the same cdet_app_item object, then the collision check is not
executed in such group.

R.4.3. Collision Detection Queries

Sometimes, it is required not only to detect a collision of bodies, but also to get a list of colliding faces, as
shown in Fig. R.4.2.2, or reveal groups of bodies, for which collision detection is not required. This is
achieved using a set of type classes (cdet_query inheritors) configured to request collision details:

*  The cdet_query result structure is the simplest and the quickest variant for detecting collisions in the
body control group. This structure is used as a default parameter in the CheckCollisions method.

* The cdet first collided structure gives the first found pair of colliding faces.

* The cdet collided faces structure gives a set of colliding faces as an ordered set of pairs
std::pair<cdet_app_item,const MbRefltem*>, where the first element in the pair is a solid body
model in the client application, and the second element in the pair is a face belonging to the model.
The cdet collided faces::Group method permits to group the objects of the control body set to
detect only intersections between the groups.

The cdet collided faces::Group method groups a pair of bodies; in order to join # bodies in a group, you
should call the cdet collided faces::Group method n-1 times for the first body and all other bodies in the
group.

Item R.4.4. Configuring a Collision Detection Query describes how the geometric kernel user can
configure his’/her own queries by using the cdet query inheritance. However, in most cases you can simply
use the cdet collided faces class for a query. To do this, please create cdet collided faces instance and use it
as a parameter in CheckCollisions method. Before this, you can configure the detection filter using the
cdet_collided faces::Group and cdet_collided faces::ExcludeGroup methods. If required, you can reset the
search filter by calling the cdet collided faces::Reset method and reconfiguring the filter.

The method
cdet_collided faces::Group( cdet_app_item fs¢,
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cdet_app_item snd )
declares a group of bodies, the elements of which are not checked for collision with each other.
The method input parameters are:
/st and snd are a pair of bodies already included in the groups or grouped for the first time.

This method groups two bodies or adds one body to the group of the other body. So, if you want to group
n bodies, you need to call the cdet collided faces::Group method n-1 times for the first body and for all
other bodies in the group.

The method
cdet collided faces::ExcludeGroup( cdet_app_item member )
excludes all group elements from the collision detection.

The input parameter of the method is:
member is any body in the group, the elements of which are excluded.

This method disables all collision checks in this group. It is recommended to use this method to
temporarily disable the body check collisions without complete deletion from the set using the
MbCollisionDetectionUtility:: Removeltem method, because adding them later using AddItem method
requires more computation time than cancelling the exclusion using the cdet collided faces::Reset method.
There are two possible ways to exclude a body set from collision detection: either call the ExcludeGroup
method many times for all set elements or first group all the bodies that should be excluded and then call the
ExcludeGroup method once for any body included in the group.

The method
cdet_collided faces::Reset()
resets all the Group and ExcludeGroup call results. The method is used if it is required to reconfigure the
groups and the exceptions for the previously defined cdet collided faces query structure.

476



R.4.4. Configuring a Collision Detection Query

If the cdet collided faces structure configuration options are insufficient, then C3D geometry core user
can create a custom query. To do this, you need to define the cdet query class inheritor and implement for it
a special call-back function of the following type:
typedef cback res (*cback_func)( cdet query *, message, cback data & ).

Below you can find C++ example code for cdet query result structure that inherits the cdet query query
structure. The example works until the first intersection is found and it determines whether there is at least
one intersection in the control body set. You can find the example in cdet data.h file.

1/
struct cdet_query_result: public cdet_query

cdet_result result;

cdet_query result()
: cdet_query( QueryFunc )
, result( CDET_RESULT Nolntersection )

&

private:
static cback res QueryFunc( cdet _query * query, message code, cback data &)

{
cdet_query_result * q = static_cast<cdet_query result*>( query );
switch( code )

{
case CDET_QUERY_STARTED: // The collision query is executed for all solid bodies of the set

{
g->result = CDET_RESULT Nolntersection;
return CBACK_VOID_RESULT;

}
case CDET_INTERSECTED: // The first intersection is found.

{
g->result = CDET_RESULT Intersected,;
return CBACK_SUFFICIENT;

}
case CDET_FINISHED: // A pair of solids is finished.
return (q->result == CDET_RESULT Intersected) ? CBACK_BREAK:CBACK_VOID_RESULT;

default:
return CBACK_VOID;
¥
}
1
The query is based on the call-back function
static cback res QueryFunc( cdet query * query, message code, cback data & cData ),
the user can implement this function in any way he/she likes. This function is passed to the CheckCollisions
algorithm via the cdet query structure and it can be called by one of the following events (enum
cdet_query::message):

CDET_QUERY_STARTED (The collision detection started in the control body group),
CDET _STARTED (The collision detection started for object pair),
CDET_FINISHED (The collision detection for object pair was ended),
CDET_INTERSECTED (The intersection of faces for a pair of objects was found),
CDET _TOUCHED (The contacting faces for a pair of objects was detected).

The QueryFunc function has the following input parameters:
* (query is a pointer to the query structure,
* code is an integer encoding the detection event,
e cData is a data pass structure.
The function returns one of the cback res enumeration values:
CBACK _SUFFICIENT (Client application response to the CDET INTERSECTED
or CDET TOUCHED events;
the search is interrupted for this pair of bodies, but is continued for other pairs in the control body set),
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CBACK_SKIP (Skipping the detection for this body based on CDET_STARTED event:
the detection for other pairs in the set will be continued),
CBACK BREAK (Interrupts further intersection detection for all events),
CBACK VOID (Does not impact the collision detection query and continues the detection),
this enumeration value is passed to the C3D core by the client application to configure detection algorithm.
code is an integer that defines the detection event, it takes one of the following values:
CDET _QUERY_STARTED,
CDET STARTED,
CDET FINISHED,
CDET_INTERSECTED,
CDET _TOUCHED.
The cData data structure is used to pass the cdet query::geom element, it should have the following
form:
struct cback data

{
geom_element first, second;
¥
where an element of cdet query::geom_element pair is a detection feature structure, it contains the following
components:
e geom_clement::appltem is a geometric object in the client application,
* geom_clement::refltem is a MbRefltem type geometric object, usually it is MbFace face,
e geom_element::wMatrix is a matrix that defines the conversion from the local CS of the body to the
general global CS.
Various implementations of the QueryFunc call-back method permit to use the following detection
process configuration methods:
*  Collect all face pairs that take part in collisions of the bodies;
* Remove certain bodies or pairs of bodies from collision analysis at any moment;
* Distinguish between face tangent case and face intersection case;
* Interrupt the detection in case of a certain result;
e Interrupt the detection if tangency or intersection is found;
e Group bodies to avoid detection of intersections within the group.

R.4.5. Grouping Bodies Included in the Control Set

Collision control often requires to detect collisions between body groups instead of collisions for all pairs
in the control body set. For example, you can improve performance by skipping the intersection tests if it is
known that the bodies in the group do not intersect, or if a detection in the group is not required due to some
reason. Two methods are used to form such groups.

The first method is to use the same appltem value in the AddItem method when the bodies are added in
the group. This method is useful when the bodies belonging to one "monolithic" object on the client
application side are naturally grouped.

The second method is to configure cdet query to skip the intersection test for pairs of bodies belonging to
the same group. An example of this method is included in the cdet collided faces class source code. To do
this, you need to return CBACK_SKIP for the CDET_STARTED event in the call-back method for a pair of
bodies belonging to the same group.
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S.1. TWO-DIMENSIONAL GEOMETRIC SOLVER

From the geometric point of view, any drawing can be presented as a set of plane objects, i.e. points,
lines, segments, arcs, ellipses, and spline curves. However, not every arbitrary set of flat geometric objects is
a drawing. In any drawing, geometric objects always depend on interrelations that determine the positions of
some objects in respect to other ones. Such interrelations are always assumed to exist, no matter whether we
draw a sketch by a pencil on paper or simulate it on the computer. As for computer-aided drawing, such
interrelations are set by geometric constraints, that include logical constraints, such as coincidence,
parallelism/perpendicularity, tangency, horizontality, verticality, symmetry, and dimensional constraints that
set various linear and angular dimensions, as well as curve length or radius. A sketch/drawing that has at
least one dimensional constraint is called a parametric one.

The 2D geometric solver permits to calculate the positions of geometric objects meeting all the given
constraints and sketch dimensions. If the positions of objects during drawing conform to given constraints
and dimensions, then this process is called parametric drawing.

S.1.1. Assignment of GCE Geometric Solver

The 2D solver included in C3D geometry core is called GCE. This is an internal name given for technical
purposes, it is an abbreviation of Geometric Constraint Engine. GCE is a component of C3D Solver module
that has another component, namely three-dimensional mating solver (GCM). The main purpose of the GCE
component is to satisfy the system of constraints for geometric objects of flat drawing (sketch). The
following flat geometric objects can be a subject of GCE calculations: a point, line, circle, ellipse, spline or
parametric curve. Users can add links to them in the form of constraints selected from a given set of types,
including the following logic constraints: parallelism, perpendicularity, tangency, point on curve, symmetry,
and also various types of dimensional constraints that define the distances, lengths and angles. The solver
can also work with curves that have ends (bounded curves), for example, line segments and circular arcs.

All functions of the GCE geometric solver are available via the gce types.h and gce api.h header files,
they contain a set of simple data structures and functions. The solver type system reflects the main concepts
required to define geometric constrain problem for a drawing and manipulate the states of geometric objects.
The problem domain of the geometric solver includes such concepts, as geometric solver, geometric
constraint, dimension, constraint system, numeric variable, etc. The application interacts with the constraint
solver based on simple C++ data structures, all these structures are declared in gce types.h file.

S.1.2. Embedding in an Application

The GCE geometric solver is designed to be a general-purpose parametric drawing component. It means
that it can be embedded into any application that deals with planar geometry, drawings or sketches. We
assume that such application already has its data structures that represent the sketch geometry. In fact, the
developer who embeds GCE component in his application should provide to the solver control over his
geometric objects and a due system of constraints. Solver API has its own abstract data type system that
provides the minimal functionality required to define constraint satisfaction problem. Therefore, it is required
to implement a special wrapper to provide sketch control to the geometric solver. The wrapper would be a
bridge between the C3D Solver and the application, it would pass geometry and constraints data into the
solver and also apply solver computation results to the sketch geometry. Fig. S.1.2.1 shows a sample flow
chart that describes the interaction of the constraint solver with a sketch. GCE wrapper serves sketch
parametric model and performs the following functions:

* Loads sketch geometric model expressed as C3D Solver data types into the solver;

*  Processes editor requests, e.g., adds or deletes constraint system data, calculates the sketch and drags
geometric objects;

*  Controls the state of sketch geometry with applied constraints;

*  Vice versa, updates solver data based on the actual state of sketch geometry;

* Hides (adapts) solver API using its mathematic data types and provides more convenient API with

479



application data types.

The wrapper requests The wrapper keeps control of
dafa from fhe solver. the geometries under constraits.
L < Faramefric skefch
N Q
3 Q
°§ Q = Geoms
S Q
(30 Salver | S < |
S <
. [ " Lonstramnts
3 3
The wrapper calls
the solver fo add dafa The wragper requests _
data from e sketch The edifor makes changes
fo the skefch
Skefch edifor commands the wrapper fo Skelch edifor
add data fo the solver, and makes queries
fo evaluate the sketch A The editor processes

events from the end user.

< User inferface >

Fig. S.1.2.1.

The flow chart on Fig. S.1.2.1 does not show the only solver embedding option, it just shows an example
of a possible way to integrate it in an application with adaptation of GCE mathematic data structures to
application data types.

The GCE component does not permit to save user data in a document file, so application developer
should implement read/write sketch constraint system in the application document. Furthermore, one should
take into account that the set of geometric solver types is not able to cover all diversity of application
geometric types. For example, the solver does not have a rectangle type, but it may be represented as four
points and lines with some constraints. A possible software implementation is based on creating its method
for any drawing object that describes it in the solver.

S.1.3. Supported Geometry Types

The GCE geometric solver supports a basic set of geometry types sufficient to build various sketch
drawing objects on its basis. The basic type set includes the following geometry types:
* Apoint is defined by two Cartesian coordinates x and y;
* Aline is defined by a point and a normal vector;
* Acircle is defined by a center point and a radius;
* An ellipse is defined by a center point, a guiding vector, and two semi-axis values;
* Aspline is defined by NURBS data structure;

480



* A parametric curve is defined by a MbCurve general curve type object.
The solver also permits to create separate parts or arcs based on infinite curves. Bounded curve type and
its special case line segment were designed for this purpose.
*  Abounded curve is defined by one base curve and two end points;
* Aline segment is defined by a pair of points.

S.1.4. Types of Geometric Constraints and Dimensions

Any geometric constraint links geometric objects that are called constraint arguments. It is possible to use
as a constraint argument any object listed as a geometry type in Item S.1.3. Supported Geometry Types . For
instance, a circle can be tangency constraint argument. Constraints are classified as unary, binary and ternary
based on the number of geometry arguments. They link one, two, or three objects correspondingly.
Symmetry is an example of a ternary constraint. It includes three objects: two points and a symmetry axis.
In general case, a constraint may have N arguments. Logical constraints assume dependencies between
geometric objects only. Dimensional constraints establish a link between geometric objects and numeric
parameter that defines a specific linear or angular dimension. Therefore dimensional constraints always have
a last numeric argument, that is also called a scalar.

The GCE solver supports the constraint types specified in Table S.1.4.1.

Table S.1.4.1. Constraint types

Logical constraints:

fixing
horizontality
verticality
segment length
coincidence
point on curve
alignment of points
collinearity
equal length
equality of radii
parallel
perpendicularity
tangency
middle point

mirror symmetry

bisector

Dimensional constraints:
segment length
radius
distance
distance with a direction

angle;

Special constraints:
driving parameter

fix spline derivative

point on curve with a position based on curve parameter

Linear equation of the following form:

ayvitavatasvst.. ta, v, +tc=0

Each of these constraints will be further described below. Logical constraints are described in Chapter
S.3. TWO-DIMENSIONAL LOGICAL CONSTRAINTS. Dimensional constraints and the issues of adding
constraints to the sketch are described in Chapter S.2. TWO-DIMENSIONAL DIMENSIONS.
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S.1.5. Basic Data Types of GCE Solver API

The application interacts with the constraint solver based on simple C++ data structures, all these
structures are declared in gce types.h file. The key role is played by descriptor data types that identify any
objects controlled by the solver (see Table S.1.5.1.).

Table S.1.5.1. Descriptor data types

Solver data type Implementation Interpretation

GCE_system void * constraint system descriptor
geom_item size t geometric object descriptor
constraint_item size t constraint descriptor
var_item size t numeric variable descriptor

Data type Data types with finite enumerations of possible values are listed in Table S.1.5.2.

Table S.1.5.2. Enumeration data types

Solver data type

Interpretation

geom_type

geometric object type

constraint_type

constraint type

point_type

type of requested control point

coord name

geometric object coordinate name

GCE result

function diagnostic code

GCE bisec variant

selection between bisector solutions

Data structures listed below (Table S.1.5.3.) are used to pass object parameter set. For example,
GCE ellipse structure passes ellipse data in the solver: center coordinates, semi-axis dimensions, and a

guiding vector.

Table S.1.5.3. Data structures

Solver data type Interpretation

GCE vec2d 2D vector coordinates

GCE_point Coordinates of a point on a surface
GCE _point_dof point freedom degree record

GCE _line line coordinates

GCE circle circle coordinates

GCE ellipse ellipse coordinates

GCE _spline spline coordinates and characteristics

GCE_dim_pars

dimensional constraint parameters

GCE_adim_pars

angular dimensional constraint parameters

GCE_Idim_pars

linear dimensional constraint parameters
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GCE _dragging point dragging control point

S.1.6. Geometric Constraint System

Geometric constraint system is a set of geometric objects and constraints that link these objects. The types
of supported geometric objects and constraints are described in items S.1.3. Supported Geometry
Types ,S.1.4. Types of Geometric Constraints and Dimensions correspondingly. It is assumed that parametric
sketch created by the application with all its objects and constraints has its own constraint system. From
software engineering viewpoint it means that each parametric sketch is associated with the constraint system
using GCE_system descriptor, and each its geometric object and constraint are represented by their unique
type descriptors geom_item and constraint_item.

Before proceeding to work with sketch geometric constraints it is required to declare a constraint system
for it by calling

GCE_system GCE_CreateSystem()

The function returns the constraint system as GCE_system descriptor, it is a pointer to internal data
structure instance in the geometric solver. All further manipulations with the constraint system will be
performed using this descriptor. For example, if you want to declare a point in the sketch, then it is required
to call the following function for its constrain system:

geom_item GCE_AddPoint( GCE_system gSys, GCE point pVal )

The function returns a descriptor of the geometric point that belongs to the gSys geometric constraint
system. The pVal parameter defines the start coordinates of this point <X,Y>.

When you finish to work with the sketch, you should always call the function that deletes the constraint
system:

void GCE_RemoveSystem( GCE system gSys )

This function completely releases the memory occupied by the constraint system with all object and
constraint data. After calling the GCE_RemoveSystem function, the constraint system descriptor becomes
invalid, i.e. if you try to use the descriptor then the application can crash.

The function

void GCE_ClearSystem( GCE_system gSys )

clears the constraint system, it deletes objects and constraints only from the memory, but it keeps the
constraint system valid for further work.

S.1.7. Representation of Geometric Objects

Geometric constraint solver works with a certain geometric object representation form shown in
Fig.S.1.7.1. All objects are expressed using point, vector and number coordinates (scalars).
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Fig. S.1.7.1.

The application can have its own representation of geometric objects that differs from solver
representation. However, passing object status data in the solver and passing the calculation results back are
based on the fact that each geometry type has its representation:

* A point is represented by a pair of Cartesian coordinates <X,Y>.

* Aline is defined by its position point and a normal vector. It is assumed that a curve has a guiding
vector equal to the normal vector rotated 90 degrees clockwise. In other words, the normal with
<Y,—X> coordinates will correspond to the guiding vector with <X,Y> coordinates.

* Acircle is defined by its center point and a radius. At this moment, radius can be a positive non-zero
number only.

* An ellipse is defined by its central point, radii along the major and minor semi-axes and the guiding
vector of the main semi-axis. Ellipse parameters are also defined by a periodic parameter ranging
from 0 to 2z running the ellipse counterclockwise along its starting point at the main semi-axis.

* A parametric curve is passed to the solver as MbCurve class. Such curve is considered to be fixed,
and the calculations associated with this curve are based on the following virtual functions:
MbCurve::PointOn, MbCurve::FirstDer and MbCurve::SecondDer, that return, correspondingly, the
first point on the curve based on the parameter, the first or the second derivatives in the point.
Parametric curves are described in more detail in Item S.5.2. General Parametric Curves

Note. In the current version, you should create MbCurve instance in order to create a parametric curve in the
constraint system. However, an alternate variant based on simple user-implemented functions will be
implemented in future releases. C3D core user can also implement custom inheritors for the MbCurve class.

* A spline uses NURBS representation based on a list of control points. Work with splines is described
in more detail in Item S.5.2. General Parametric Curves.

* A bounded curve is a curve portion limited by end points on both sides. It is defined by three
elements: a base curve, curve portion start point and curve portion end point.

S.1.8. Degree of Freedom
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Every geometry type has a degree of freedom equal to the minimum number of coordinates required to
determine the state of the geometric object. For example, the degree of freedom is 2 for a 2D point. For a
circle the degree of freedom is 3, as it is completely defined by three parameters <X,Y,R>, namely, center
coordinates and radius. According to Item S.1.7. Representation of Geometric Objects., a line is represented
by a position point and a normal vector. This presentation is convenient, but it is redundant; minimum
sufficient line presentation can be a pair of values, such as offset value and slope angle, so for a line the
degree of freedom is 2. For an ellipse, the degree of freedom is 5. For a spline, the degree of freedom is the
sum of degrees of freedom of its control points. A parametric curve is completely determined on the
application side, i.e. its degree of freedom is zero. Table S.1.8.1. lists the degrees of freedom for all types
supported by the solver.

Table S.1.8.1. Degrees of freedom for geometric objects

Geometry type Degree of freedom

Point

Line

Circle

2
2
3
Ellipse 5
2
0
2

Spline - Number of control points

Parametric curve

Bounded curve + Degree of freedom of the base curve

Every geometric object included in the system adds a number of its degrees of freedom to the overall
degree of freedom for the sketch. From the other side, every added constraint takes away one or more
degrees of freedom. To define the state of all sketch geometric objects, it is required to add some number of
constraints that take away all degrees of freedom for the object.

Most constraints take away one degree of freedom. These are constraints like parallelism,
perpendicularity, horizontality/verticality, equality of radii, equality of lengths, a point on curve, tangency,
and most dimensional constraints. Other constraints take away two degrees of freedom: middle point,
collinearity, symmetry, and bisector.

It can be said that the task of parametric drawing is to completely determine geometric objects in the
sketch. The number of geometric constraints required to completely determine the sketch is the sum of
degrees of freedom of all the sketch objects.

S.1.9. Add and Delete Geometric Objects

The geometric solver mainly works with geometric objects, so to start to create constraint system, the
application declares the geometric objects that will become constraint arguments in the constraint system.

Every geometric object declared in the constraint system will have its unique identifier, namely,
geom_item descriptor. Its geometric type (geom type) is not changed during the entire object life. API C3D
Solver calls that add geometric objects to the system are described below.

A point is added using

geom_item GCE_AddPoint( GCE_system gSys, GCE point pVal ) method.

The function returns a descriptor of the geometric point that belongs to the gSys geometric constraint
system. The pVal parameter sets the start values of <X,Y> point coordinates.

A line is added using

geom_item GCE_AddLine( GCE_system gSys, GCE _line 1Val ) method.

The function returns a descriptor of the line on a plane that belongs to the gSys geometric constraint
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system. The 1Val sets the starting values of position 1Val.p and a normal to the line 1Val.norm.
A circle is added using
geom_item GCE_AddCircle( GCE_system gSys, GCE _circle e¢Val ) method.

The function returns a descriptor of the circle that belongs to the gSys geometric constraint system. The
cVal parameter defines the starting values of the circle center c¢Val.centre and its radius cVal.radius.

An ellipse is added using

geom_item GCE_AddEllipse( GCE_system gSys, GCE _ellipse eVal ) method.

The function returns a descriptor of the ellipse that belongs to the gSys geometric constraint system. The
eVal parameter sets the ellipse start parameters:

<eVal.centre, eVal.direct, eVal.majorR, eVal.minorR>, that define correspondingly the center, guiding
vector, and radii along the main and the minor semi-axes.

A spline is added using

geom_item GCE_AddSpline( GCE_system gSys, GCE _spline spl ) method.

The function returns a descriptor of the spline that belongs to the gSys constraint system. The spl data
structure determines the original state of the spline. Parts of spline curves and methods used to define them
are reviewed in Item S.5.1. Spline Curves

A parametric curve of general form is added using

geom_item GCE_AddParametricCurve( GCE system gSys, const MbCurve & crv ) method.

The function returns a descriptor of the parametric curve added to the gSys constraint system. The crv
object completely determines abstract mathematical description of the curve in parametric form. 2D curve
class is described in more detail in Item O.3.1. MbCurve Two-Dimensional Curve. It should be noted that the
MbCurve data type is included in the C3D geometric core class hierarchy, so its lifetime is determined by the
reference counter. In other words, the constraint system guarantees the validity of MbCurve instance until the
parametric curve is deleted from the system. Work with parametric curve is described in more detail in Item
S.5.2. General Parametric Curves.

A bounded curve is added using

geom item GCE_AddBoundedCurve( GCE system gSys, geom_item curve, geom_item p[2] )
method.

The function returns a descriptor of the bounded curve that belongs to the gSys constraint system. The
created curve is based on the curve with p[0] and p[1] end points as boundaries. In fact, this method links
three objects (a base curve and two points) into a single object, and automatically creates two "point on
curve" constraints for the end points. A code fragment given below shows an example how to create a
circular arc.

GCE_system gSys = GCE_CreateSystem();

GCE_circle circPars; // Circle values

GCE_point endP1, endP2; // Coordinates of the end points.

/...

// The code that assigns start values of the circle and its end points should be inserted here
/...

geom_item p[2] = { GCE_AddPoint(gSys, endP1), GCE_AddPoint(gSys, endP2) };

geom _item circltem = GCE_AddCircle( gSys, circPars ); / Creating a circle. It's a base curve of the
arc.

geom_item arc = GCE_AddBoundedCurve( gSys, circltem, p ); // Creating the circular arc.
/...

GCE_RemoveSystem( gSys );

Likewise, you can call GCE_AddBoundedCurve method to create elliptical arcs, parametric curve
portions, line segments, etc. A bounded curve created based on a straight line is called a segment, and all the
constraints applicable to a straight line are also applicable to a segment.
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A geometric object added to the constraint system by any of the above methods and free of any
constraints, can be removed by calling

bool GCE_RemoveGeom( GCE_system gSys, geom_item g ) method.

This method deletes the geometric object from the system and makes its descriptor g invalid. The function
will return true if successful. The function will return false and the deletion will not be performed if the
geometric object at the moment of the call is an argument of one of the constraints. To find out if a geometric
object is available for deletion by GCE_RemoveGeom, you can use the GCE_IsConstrainedGeom
function. Also, it is allowed to delete the geometric object on which other objects are based before others.
For example, one of endpoints or base curve may be removed before the bounded curve based on them, but
it will be inevitably deleted after the deletion of bounded curve or the last of the geometric objects associated
with it.

S.1.10. Fixing and Freezing Geometric Objects

Any geometric object created in the constraint system is initially free, i.e. it has all the degrees of freedom
inherent to particular object type. During calculations, the C3D Solver may change the state of geometric
objects when it is needed to satisfy the constraints. Sometimes it is necessary to fix a part of geometric
objects so that the solver would leave the position of the geometric object unchanged. For this purpose, the
GCE API can call methods that can freeze or fix the geometric object. Only the application can change the
state of frozen or fixed geometric objects by calling

GCE_SetPointXY and GCE_SetCoordValue method.

It is useful to freeze geometric objects when it is required to fix some part of the drawing. For example, in
CAD systems a part of drawing geometry might be created by projecting a 3D model, and therefore it will be
permanently linked with it by a unilateral associative link: 3D model — flat projection.

A geometric object can be frozen using

bool GCE_FreezeGeom( GCE_system gSys, geom_item g ) method.

The method will return true, if the geometric object g became actually frozen. It should be noted that
freezing is not considered a constraint, so the value returned by the GCE_IsConstrainedGeom method does
not depend on whether the object was frozen. The degree of freedom of a frozen object is zero.

An alternative method used to fix a geometric object for the solver is to set object fixing constraint using

constraint_item GCE_FixGeom( GCE_system gSys, geom_item g ) method.

The function fixes the object g belonging to the gSys constraint system and returns the descriptor of
newly added "object fix" constraint. Unlike GCE_FreezeGeom, this method creates a constraint that can be
deleted at any moment by the GCE_RemoveConstraint method used to release the object. The fixing

constraint is also described in Item S.3.6. Unary Constraints: Horizontality/Verticality and Fixing Variants.

S.1.11. Geometric Object Control Points

Among the geometric types supported by the solver (see Item S.1.3. Supported Geometry Types), a point
plays a special role. First of all, a point is the most elementary geometric object. Secondly, all other geometry
types can be expressed using points that are called control points. For example, a circle is expressed by the
<C,R> structure, where C is the center point, and R is a scalar that determines the numeric radius value.
Thirdly, control points can independently take part in constraints as their arguments. For example, they
permit to define constraints both for a circle and for each its separate point, for example, the distance from
the circle center to the line (see Fig. S.1.11.1.).
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C is the center control point
T is the tangency of the circle and the line
D is the distance between the center and the line

Fig. S.1.11.1.

In order to work with control point as an independent point, you need to request its descriptor from the
geometric object using

geom_item GCE_PointOf( GCE_system gSys, geom_item g, point_type pnt ) function.

The function returns a descriptor of the control point of the geometric object g that belongs to the gSys
constraint system. The pnt parameter determines what control point of the object is requested and it takes
one of the following values:

* GCE_FIRST END is the starting point of the curve (the first end);
* GCE_SECOND_END is the end point of the curve (the second end);
* GCE_CENTRE is the center of circle, ellipse, or its arc (bounded curve);
* GCE_QIl is an ellipse quadrantal point (3 hours);
* GCE_Q2 is an ellipse quadrantal point (12 hours);
* GCE_Q3 is an ellipse quadrantal point (6 hours);
*  GCE_Q4 is an ellipse quadrantal point (9 hours).
Control points of spline curve can be requested using

geom_item GCE_SplinePoint( GCE_system gSys, geom _item spl, size_t pntldx ) method.
The function returns a descriptor of the spl spline control point with the pntldx number, that takes values

from 0 to N—1, where N is the number of the spline control points. Fig. S.1.11.2. shows a spline that has N =
7 control points (red circles) numbered starting from 0.

2r——)7'&3\

Fig. S.1.11.2.

S.1.12. Scalar Variables

The GCE module is mostly used to calculate 2D plane geometric objects, while constraints and
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dimensions are applied to them. These data types inherently have vector representation. Parametric drawing
assumes that geometry is linked with driving or variational numeric parameters. So it is impossible to do
without another type, a numeric variable or a scalar. Their values are usually expressed using distance or
angle measurement units.

Variables of the following type can only be used in a parametric constraint system:

* A numeric variable associated with a dimension, it is a dimensional variable. When resolved, a
dimensional variable is equal to measured dimension value. Dimensional variable can be both an
independent driving parameter of a sketch, or variational/measurement parameter. The use of
variables for creating driving and variational dimensions is discussed in Item S.2.2. Driving and
Variational Dimensions.

*  An auxiliary geometric constraint parameter, for example, a parameter that specifies where tangency
points are for complex curves. You can find more details in Auxiliary tangency parameter Section,
Item S.3.10. Tangency.

* A variable that is not associated with a geometric constraint or a dimension may be used in scalar
linear or non-linear equations that establish relations between first values and other values.

In GCE module API, a variable is represented by the var item data type. You can create variables by

calling

var_item GCE_AddVariable( GCE_system gSys, double val ) method.

The function returns a descriptor of a scalar variable with the initial value val. The variable with this
descriptor can be further used to determine dimensions, constraints, and equations.

Any variable can be dependent or independent. A dependent variable is governed by measurement
dimensions or constraints, and its value is calculated by the solver. An independent variable can't be modified
by the solver, and its value is defined by the application. To make a variable independent, just call

constraint_item GCE_FixVariable( GCE_system gSys, var_item var ) API method,

that will create a driving parameter constraint and return the constraint descriptor that fixes its value. An
independent variable can be varied by calling GCE_ChangeDrivingDimension method. Driving parameter
constraint together with other types of driving dimensions permits to create a parametric sketch; its geometry
can be changed according to a user defined law by changing independent parameters. Creation of driving
parameters and dimensions is described in Item S.2.2. Driving and Variational Dimensions.

S.1.13. Linear Equation

A linear equation is expressed by formula a,vi+a,vt+asvs+.. . +a, v, +c=0, where a, a,, as, ..., a,, and c are
constant coefficients, and vi, v,, vs, ..., v, are scalar equation variables. You can create a linear equation by
calling

constraint_item GCE_AddLinearEquation( GCE_system gSys, const double * a,
const var_item * v, size_t n, double ¢ ) method,
that returns a descriptor of the linear equation registered in the gSys system.
Initial method call data are given below:
* gSys is a constraint system;
* aisan array of constant coefficients for variables;
e vis an array of linear equation variables;
* nis a number of linear equation variables;
* ¢ isa constant coefficient c that is not multiplied by any variable.

S.1.14. API Call Journalling

C3D Solver permits to record the entire API call log, including the original parameters and the parameters
returned by called functions for any specific GCE_system constraint system. The result will be a log file that
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can be later used by C3D geometric core developers to debug and test C3D Solver functions.

Log structure. The log file is a text file, it uses simple S-expression syntax that permits to record any
nested and list-based data structures. Any API function called for a specific constraint system is recorded in
the log file in the following form:

(GCE_Func (arg list) (returned value)),
where GCE Func is the name of the called GCE function, (arg list) is a list of function arguments, and
(returned value) is the returned value.

For example, this is how a log of a call that creates a circle with a center in the coordinate system origin
and radius 2.5 looks like:

(GCE_AddCircle ((0.0 0.0) 2.5) #1)

The circle has received symbolic identifier #1, which is the value returned by the GCE AddCircle
function.

The log is actually a session record for a specific constraint system written in a language that can be
interpreted by special tools available to C3D Solver developers. You can manually edit or simplify a log, if
not all calls are required to achieve a specific result.

Enabling logging mode. In order to enable the constraint system logging, you need to call

bool GCE_SetJournal( GCE_system gSys, const char * fName ) function,
that will assign the fName log file to the gSys constraint system. If logging mode was successfully
initialized, then the function returns true.

The method input parameters are:

* gSys is an empty constraint system created by the GCE_CreateSystem method,
* fName is a string with a complete file path. Example: ”..\Journals\\sample.jrn”

If logging is enabled, then data about all API C3D Solver calls to the gSys constraint system are recorded.

Warning! The log file will be ready only when a session of work with the constraint system is finished,
i.e. immediately after calling the GCE_RemoveSystem method.

Code example. An example of code that demonstrates how constraint system session data are recorded in
the log is shown below.

GCE_system gSys = GCE_CreateSystem();
// Switch on journalling for the constraint system.
GCE_SetJournal( gSys, "C:\\Logs\\gce sample.jrn" );
// Make some calls of C3D Solver ...
GCE _point p1Val, p2Val; // Coordinates of two points = (1,1) and (2,2)
plVal.x =plValLy=1.0;
p2Val.x = p2Valy =2.0;
geom_item pnt[2] = { GCE_AddPoint(gSys, pl1Val), GCE_AddPoint(gSys, p2Val) };
GCE_AddCoincidence( gSys, pnt );
/...
/...
GCE_Evaluate( gSys );
// Finalize the constraint system
GCE_RemoveSystem( gSys );
/I The journal file is ready!

Note. Logging is required only for debugging, so it is recommended to enable it only in debug mode. It is
not recommended to leave logging enabled for application release version or production version, as it can
result in extra time and memory overheads.

Debugging and testing. Logging permit geometric core developers to debug C3D Solver functions by
recreating the call log created when the application worked. This method is based on the fact that the internal
state of a constraint system is completely defined by API call sequence, therefore it is possible to repeat the
same call sequence with the same data to fully recreate a problem arising when the application calls the
solver.

An extensive collection of logs forms a test case base that is an essential tool for C3D Solver module
development and quality control. Each C3D Solver revision is checked on a test base of logs to guarantee
that none of previous patches and upgrades was lost.
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Therefore, in order to receive consulting or resolve a problem related to embedding C3D Solver in an
application, you need to enable logging mode for a while, execute the required sequence of actions, and send
the resulting file with necessary comments or questions to C3D Labs technical support. When the error is
fixed, the corresponding log is added in test case base.
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S.2. TWO-DIMENSIONAL DIMENSIONS

Dimensions are constraints that link geometric objects with a numeric parameter (dimension value). Each
dimension measures a specific numeric geometric property, for example, the distance between points, the
angle between lines, or the circle radius. Logical constraints and dimensions differ as the former have no
numeric arguments. Each dimension always has one numeric argument (scalar) besides geometric arguments.
Driving sketch geometry by using parameters and dimensions is discussed in Item S.2.2. Driving and
Variational Dimensions

S.2.1. Auxiliary Points of Distance Dimension

You can't uniquely define distance dimensions and also diameter dimensions for some object types
without additional indication of the points used to measure the dimension. For example, a distance between a
circle and a line segment can be measured using two methods: from the "farthest" circle point to the segment
or from the "closest" point to the segment. See Fig. S.2.1.1. The terms "farthest" and "closest" are quoted
because the situation can become different when the dimension is changed: then the "farthest" point will
become closer to the segment than the "closest" point.

S

Fig. S.2.1.1.

To uniquely define the dimensions, you should call the GCE_AddPoint method to create an auxiliary
point, in which the dimension extension line from the circle side will start. The descriptor of this point will
be used as an auxiliary point when the distance dimension would be created. In the example shown in Fig.
S.2.1.1.,, only one point on the circle side is required. In other cases, such as distance from circle to circle,
two auxiliary points are needed, because there are four possible dimension measurement variants for a pair of
circles. See Fig. S.2.1.2. Dimensions equal to 30, 50, 60 and 90 show variants of measuring distances
between two circles, and, correspondingly, variants of selecting auxiliary point pairs on the circles.
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S.2.2. Driving and Variational Dimensions

Dimensions differ from logical constraints (parallelism, perpendicularity, etc.) in that they are linked with
a numeric value called dimension value. A dimension value can be set by two methods:

* Driving dimension. Dimension value is set by an independent user-defined numeric parameter that
can be changed only from outside via solver API (by calling the GCE_ChangeDrivingDimension
method). In this case the dimension does not depend on the geometry: on the contrary, the geometry
depends on the dimension, as well as on the geometric constraint. The dimensions defined this way
are required to control the geometry using dimensional parameters and they are called driving
dimensions.

*  Variational dimension. Dimension value is defined by a numeric variable that is calculated by the
solver as well as the geometry. In fact, the current value will be associated with a variable specially
created by calling the GCE_AddVariable method, and it can be reused in other dimensions or
equations. The value of dimension variable can be changed by the geometry. This representation is
used when it is required to measure the dimension rather than to set it. Dimensions linked with
variables are called variational dimensions.

Sometimes it is required to create a variational dimension that behaves as a driving dimension, especially
when you need to control two or more dimensions linked with one numeric parameter simultaneously. In this
case, you can create one or more variational dimensions that use one variable that can be made a driving
parameter by calling:

constraint_item GCE_FixVariable( GCE_system gSys, var_item var ),
where var is the dimension variable descriptor.

The function returns the "driving parameter” constraint that fixes the current value of the var variable.
After calling GCE_FixVariable, the variable virtually becomes an independent parameter of the constraint
system and it can be changed only from the outside by calling the GCE_ChangeDrivingDimension method
applied to the descriptor of the received constraint.

Driving  dimensions  and  parameters can be  varied using  the GCE _result
GCE_ChangeDrivingDimension( GCE_system gSys, constraint_item dItem, double dVal ) method.

The method input parameters are:

* gSys is a parametric sketch constraint system;

e dItem is a descriptor of driving dimension or driving parameter;

e dVal is the required value of the driving dimension or the driving parameter;

If the operation is executed successfully, then the function would return the GCE_RESULT OK code. If
the function would return an error code (not GCE RESULT OK), then it can be caused by one of the
following reasons:

* Invalid system descriptors or gSys and dItem constraints.

* The received constraint is not a driving dimension or driving parameter, for example, if the
constraint is a variational dimension.

You should take into account that this function does not calculate anything, but just prepares the change
of the driving dimension or parameter. In order to apply the change, please call the GCE_Evaluate
calculation function. If it is required to change two and more driving dimensions simultaneously, then first
make a series of preparatory GCE_ChangeDrivingDimension calls for each driving parameter or
dimension, and then calculate the new positions of geometric elements determined by the new state of
driving dimensions or parameters by calling GCE_Evaluate once.

S.2.3. Zero Dimensions and Signed Dimensions

All types of distance dimensions have a continuous domain of definition that includes zero, negative and
positive values. Fig.S.2.3.1 shows a sketch with a dimension that positions the geometry in both positive and
negative value domains. In the left image, the sketch dimension is negative, and the image on the right shows
the same sketch with dimension sign changed from negative to positive.
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Fig. 5.2.3.1.

Any type of distance and angular dimensions can have zero value. On the same Fig.S.2.3.1, a dashed line
shows the geometry in a zero state, when the dimension value is equal to zero.

Alternating signs are most typical for dimensions set for an object oriented in space, for example, a line
with a normal vectors. The line divides space into two semi-planes, so the distance dimension between a line
and a point would have various signs depending on the side of the line where the point is located. A point
lying on a line would correspond to zero dimension.

It is worth noting that the distance between the points is intrinsically non-negative; but a distance
dimension set for two points can be negative or equal to zero. It has a practical sense when you work with a
parametric drawing. For example, the dimension with alternating signs shown in the left and right sketch in
Fig. S.2.3.1, can be defined as "distance from point to line" or "point-to-point distance" constraint. In both
cases, its behavior would be the same.

S.2.4. Distance Dimension

Distance dimension is set for a pair of geometric objects. Table S.2.4.1 shows geometry type pairs
supported for distance dimensions by the C3D Solver.

Table S.2.4.1. Geometric object pairs supported for distance dimensions

Point Line Circle Ellipse Spline Parametric curve
Point \ V \
Line \ V \
Circle \/ v \
Ellipse
Spline
Parametric
curve

Regardless of curve type associated with the distance dimension, it measures the distance between points
lying on the curves. These are usually the points that provide the smallest distance between the objects.
However, it is also possible to choose other point pairs to measure the dimension. Fig. S.2.1.2. in Item .2.1.
Auxiliary Points of Distance Dimension. shows four examples of various distance dimensions for the same
pair of circles.

Distance dimension for a couple of geometric objects is set by the

constraint_item GCE_AddDistance( GCE_system gSys, geom_item g[2],
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const GCE_Idim_pars & dPars) method.

The function returns a distance dimension descriptor set for the objects g[0] and g[1] belonging to the
gSys constraint system.

The dPars parameter structure defines the following distance dimension settings:

* dPars.dPars sets the parameter value, it can be either an independent parameter or a variable;

e dPars.hp[2] is a pair of auxiliary points that set the measurement result when it is required (learn

more in [tem .2.1. Auxiliary Points of Distance Dimension).

The dPars.dPars parameter actually defines the source, where the dimension value is taken. If
dPars.dPars.var = GCE _NULL V, then the dimension value is determined by the independent numeric
parameter dPars.dPars.dimValue, which makes this dimension a driving dimension. If dPars.dPars.var
contains variable descriptor, then the dimension is variational. Driving and variational dimensions were
discussed in more detail in Item S.2.2. Driving and Variational Dimensions.

A pair of auxiliary point descriptors dPars.hp[2] is not mandatory, if the dimension measurement variant
is unique (for example, the distance between a point and a line) or if it can be selected by the solver that
would choose the measurement variant closest to the current object position and the dimension value. In this
case, dPars.hp[2] is by default equal to a pair of zero descriptors {GCE NULL, GCE NULL}. If one or
both auxiliary points dPars.hp[0] and dPars.hp[1] are defined, then the coordinates of these points would
specify the measurement option for the distance dimension. Measurement options are described in more

detail in Item .2.1. Auxiliary Points of Distance Dimension.

S.2.5. Directed Distance Dimension

A simple distance dimension measures a distance between points lying on geometric objects. A directed
distance dimension is also defined for a pair of points, but the distance is measured between the projections
of points along the line having a particular direction. This dimension type is mostly used to create vertical
and horizontal dimensions that define the distance between points projected on X or Y axis. Fig. S.2.5.1
shows the examples of vertical and horizontal dimensions for a point pair. Generally, the dimension direction
can be arbitrary.

i 40

S

Fig. 8.2.5.1.

Directed dimensions also behave in a specific way during a geometric transformation of the sketch by the
GCE_Transform method. Directed dimension would rotate if the transformation matrix contains a rotation
component.

Directed dimensions are created by the
constraint_item GCE_AddDirectedDistance( GCE_system gSys, geom_item p[2],

const GCE _1dim_pars & dPars ) method.

The function returns the descriptor of directed dimension.

The method input parameters are:

* gSys is a parametric sketch constraint system;

*  p[2] are the descriptors of point pair;

* dPars is a data structure, that besides standard settings inherent to distance dimensions (see similar
settings for GCE_AddDistance), additionally sets the dPars.dirAngle angular direction. For
instance, if it is required to define a horizontal dimension, then dPars.dirAngle = 0; if it is required
to define a vertical dimension, then dPars.dirAngle = 7/2. Generally, dPars.dirAngle can range
from 0 to 2x.

Note. In the current C3D Solver version, the directed dimension can be set only for points.
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S.2.6. Distance From a Point to a Segment

Distance from a point to a segment is a distance dimension that includes three points, where two points
define a line segment, and from it the distance to the third point is measured. This dimension is created by
the

constraint_item GCE_AddDistancePLs( GCE_system gSys, geom_item p[3],

const GCE_dim_pars & dPars ) method.

The specific feature of this constraint is that the segment length should be non-zero. It means that the
distance dimension would stop working if the two points defining the segment would coincide. The
dimension can be applied when it is required to define the distance dimension only based on points, without
any linear object. However, when it is not needed, it is recommended to use the GCE_AddDistance
function, which would be sufficient to create almost all variants of distance dimensions.

S.2.7. Angular Dimensions

An angular dimension is defined for two geometric objects that have vector guiding lines. The angular
dimension value is specified in radians, its values range from 0 to 27 and it is defined by an angle between
the guiding vectors of the first and second objects measured counterclockwise. An angular dimension
measured this way is shown in Fig. S.2.7.1. as two intersecting lines with given directions. The right part of
Fig. S.2.7.2. shows a pair of lines that have the same angle between vectors, but with the dimension
measures a reverse angle sector. The value of such dimension is determined by formula D = 2z — a, where a
is the measured angle between the vectors, and D is the dimension value. This dimension is also called a
conjugate dimension. Another way to receive it is just to swap angular dimension arguments.

D=a / DZﬂ-ao/
()
3
> ) >

325°

Fig. S.2.7.1. Fig. §.2.7.2.
There are four ways to define an angular dimension for one pair of directions, including the two ways
described above. Fig. S.2.7.3. shows a dimension, its value is determined by adjacent angle formula: D =z —
a. Fig. S.2.7.4. (right part) shows an alternate adjacent angle version that is defined by the formula D =z +

Dn-a/1[+5o>/ Dn+%>\/
> >
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Fig. §.2.7.3. Fig §.2.7.4.

One more pattern associated with four ways to set the angular dimension is that the dimension with the
value D = 2 — a can be produced from the dimension with the value D = a after a simple swap of the first
and second dimensional constraint objects. Similarly, the 4th variant (D = w + &) can be received from the
3rd one (D = — a) by swapping the arguments.

Angular dimension for a pair of directed objects, such as segments, lines, or ellipses, is defined by the
constraint_item GCE_AddAngle( GCE_system gSys,

geom_item 11, geom_item 12,
const GCE adim_pars & dPars ) method.

The function creates a new angular dimension defined for the 11 and 12 geometric objects in the gSys
constraint system. The dimension value and the way to define it are determined by the dPars structure.

The function returns the descriptor of a new angular dimension.

The dPars structure determines the value of an angular dimension defined using the dPars.dPars
structure (GCE_dim_par), where the dimension value is stored in dPars.dPars.var variable or if
dPars.dPars.var = GCE_NULL_V then the dimension value is defined by dPars.dPars.dimValue
independent numeric parameter, that makes it a driving dimension. Driving and variational dimensions are
further described in Item S.2.2. Driving and Variational Dimensions.

If dPars.adjacent = false, then the dimension value would be defined by the formula D= f-a  The f

factor in this formula is defined by the dPars.factor parameter, and it permits to set the angular dimension in
other units. For example, if dPars.factor = 180/z, then the application can set the angular dimension in

degrees. To set the angular dimension with value D=f '(2 T—a) , it is required to swap 11 and 12.
To define the angular dimensions with adjacent angle variant shown in Fig. S.2.7.3. and Fig. S.2.7.4., it is
required to set the flag dPars.adjacent = true. In this case, the dimension value will be defined by formula

D=f '(71'_0‘) or D=1 '(71' +0‘) . The second formula is recieved by swapping the arguments 11 and 12.
The ffactor is also defined by the dPars.factor parameter.

S.2.8. Angular Dimension Based on 3 or 4 Points

C3D Solver provides one more method to determine an angular dimension, in this case the guiding
vectors are defined by point pairs. The same method permits to set the angular dimension based on three
points that determine the angle of the measuring triangle.

The angular dimension based on three or four points is received using the
constraint_item GCE_AddAngle4P( GCE_system gSys, geom_item fPair[2],

geom_item sPair[2], const GCE_adim_pars & dPars ) method.

The point pairs defined by the fPair and sPair descriptors determine the angular dimension measurement
vectors. The vector from the point fPair[0] to the point fPair[1] determines the first angle side, and the
vector from sPair[0] to sPair[1] determines the second angle side. Fig. 2.8.1. shows the measurement angles
of the dimension based on three points (at the left) and based on four points (at the right). In order to define a
dimension based on three points, it is required to set the angle vertex point twice, in the first pair and the
second pair, for example, fPair[0]=sPair[0].

sPair[1]
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fPair[0] = sPair[0] fPair[1] fPair[0]
oLz raro ey

Fig. 5.2.8.1
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Other parameters of the GCE_AddAngle4P function are set in the same way as for the GCE_AddAngle
function.

S.2.9. Radial and Diameter Dimensions

These types of dimensions are available for circles and arcs, they correspondingly specify circle radius or
diameter that is twice the radius. As well as distance and angular dimensions, radial and diameter dimensions
can be associated with an independent numeric parameter or a scalar variable, i.e. that can be driving or
variational, this can be set by the GCE_dim_pars structure.

Radial dimensions are created using the following method:
constraint_item GCE_AddRadiusDimension( GCE system gSys,

geom_item cir,
GCE_dim_pars dPar ).

A diameter dimension is created by the following method:

constraint_item GCE_AddDiameter( GCE_system gSys,
geom_item cir,
GCE_dim_pars dPar ).

Both methods have the same initial data:

* gSys is the geometric constraint system, where the new dimension is registered;
e cir is circle descriptor or circle arc descriptor;
e dPars is the structure that determines the dimension value in length units.

The dimension value is stored in the dPars.var variable, or, if dPars.var = GCE_NULL_V then the
parameter value is determined by dPars.dimValue independent numeric parameter, that makes it a driving
dimension. Driving and variational dimensions are described in more detail in Item S.2.2. Driving and
Variational Dimensions.
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S.3. TWO-DIMENSIONAL LOGICAL CONSTRAINTS

Logical constraints, unlike dimensions, do not have numeric parameters and they are determined for
geometric objects only. C3D Solver permits to set the following logical constraints for geometric objects:
horizontality/verticality, coincidence, parallelism/perpendicularity, tangency, equality of radii, etc.

S.3.1. Coincidence of a Point and Other Object

If two geometric objects have the same type, then coincidence constraint presumes equality of two
geometric objects. However, in the current version of C3D Solver this constraint is valid only if one of the
arguments is a point.

If one of the coincidence arguments is a point, and the other one is a curve, then the constraint would
define the point lying on the curve.

The coincidence constraint is defined by the following method:

constraint_item GCE_AddCoincidence( GCE_system gSys, geom_item g[2] ).

The function would add to gSys system the coincidence constraint for two geometric objects (g[0] and
g[1]) and would return the constraint descriptor.

S.3.2. Alignment of Points

This type of constraint is mostly used to horizontally or vertically align point pairs. In general, this
constraint would align points on an imaginary line with a given angular direction.
Point alignment is set up by calling the method

constraint_item GCE_AddAlignPoints( GCE_system gSys, geom_item p[2], double ang ).

The function returns a descriptor of a new constraint registered in the gSys system.

p[0] and p[1] pair parameters set the descriptors of the aligned points, and the ang parameter is set in
radians and it determines the direction, along this direction the points would be aligned. For example, the

ang=0 angular direction would correspond to horizontal alignment of points, and if ang= 7/2, then the points
would be aligned vertically.

S.3.3. Parallelism/Perpendicularity

Parallelism and perpendicularity constraints are set for pairs of lines or segments using the following
methods:

constraint_item GCE_AddParallel( GCE_system gSys, geom_item g[2] ),
constraint_item GCE_AddPerpendicular( GCE_system gSys, geom_item g[2] ),

Methods accept the following initial data: gSys is the geometric constraint system, g[2] is a pair of
straight-line curves. The methods return a descriptor of a geometric constraint registered in the gSys system.

S.3.4. Collinearity
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Collinearity means that the geometric objects included in this constraint lie on the same line. Collinearity
can be defined both for two geometrical objects, and for three points.
Collinearity constraint is created for a pair of geometric objects by calling the

constraint_item GCE_AddColinear( GCE_system gSys, geom_item g[2] ) method,

it requires that one of the constraint arguments should be a straight-line, and the other one should be either a
line or a point. The geometric arguments are set by the g[2] pair. The function returns a descriptor of a new
constraint registered in the gSys system.

Collinearity constraint can be created for three points by calling the

constraint_item GCE_AddColinear3Points( GCE_system gSys, geom_item p[3] ) method.

The descriptors of three points that should be placed on one line are passed via the p[3] parameter. The
function returns a descriptor of a new constraint registered in the gSys system.

S.3.5. Equality of Lengths and Radii

Both functions that create constraints for equality of lengths and equality of radii accept the same data
types: a constraint system and a pair of geometric objects.
The geometric constraint that sets the equality of two bounded curve lengths is created by the

constraint_item GCE_AddEqualLength( GCE_system gSys, geom_item g1, geom_item g2 ) method.

In the current version of C3D Solver, this method works for a pair of segments only. The constraint
arguments are defined by gl and g2 segment descriptors. The function returns a descriptor of a new
constraint registered in the gSys system.

The equality of radii of two circles or arcs is defined by the

constraint_item GCE_AddEqualRadius( GCE_system gSys, geom_item cl, geom_item ¢2 ) method,

it accepts correspondingly the gSys constraint system, c1 first circle or arc descriptor, and ¢2 second circle or
arc descriptor. The function would return a descriptor of a new constraint registered in the gSys system.

S.3.6. Unary Constraints: Horizontality/Verticality and Fixing Variants

The following constraints: horizontality, verticality, and object/line/direction fixing are applied to a single
geometric object, i.e. they are unary constraints. In order to create one of these constraints, please call the
following function:

constraint_item GCE_AddUnaryConstraint( GCE system gSys, constraint type cType, geom item
geom ).

The function adds a unary constraint for the geom geometric object to the gSys system. The cType
parameter defines the enumeration type of the unary constraint and it can take one of the values listed in
Table S.3.6.1.

Table S.3.6.1. Unary constraint types

Constraint type Description

GCE_FIX GEOM Fixing a geometric object makes this object immovable. The solver cannot
change the state of this object during calculations. A fixed geometric object can
be changed only if the application calls GCE SetPointXY or
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GCE_SetCoordValue.

GCE_HORIZONTAL Horizontality and varticality constraints are applicable to line and line

GCE VERTICAL segment types. Thejse constraints align a linear objgct With sketch coordinqte

- system: horizontality for the OX axis, and verticality for the OY axis,
correspondingly. Please note that these constraints permit to flip the line
guiding vector by 180 degrees.

GCE_ANGLE OX This constraint fixes the angular position of a line or a segment. The
GCE_ANGLE OX constraint is described in greater detail in Item S.3.9.
Angular Position Constraint.

GCE_LENGTH This constraint fixes the line segment length. It is described in more detail in
Item S.3.7. Length Fixing.
GCE_RADIUS DIM This constraint is described in greater detail in Item S.3.8. Radius Fixing.

For the GCE_UnaryConstraint call, this constraint type works only for a circle.
If you need to apply it to an ellipse, please call the GCE_FixRadius method.

S.3.7. Length Fixing

It is suggested that this constraint fixes the length of a curve that has a start and an end (a spline or a
bounded curve), but it is applicable to line segments only in the current version of C3D Solver. Length fixing
is a dimensional constraint, so it permits to change the length using the GCE_ChangeDrivingDimension
method.

The length is fixed by the

constraint_item GCE_FixLength( GCE_system gSys, geom_item Is ) method.

S.3.8. Radius Fixing

Radius fixing constraint is applicable to circles and ellipses. C3D Solver is unable to change circle or
ellipse radius if radius fixing constraint is set for the object. The application can work with this constraint as
with a driving dimension that permits to change the radius using the GCE_ChangeDrivingDimension
method. As for circles, this constraint is similar to a driving radial dimension that was described in Item
S.2.9. Radial and Diameter Dimensions.

A radius can be fixed by the following method:

constraint_item GCE_FixRadius( GCE system gSys, geom item g, coord name cName =
GCE_RADIUS).

Initial method call data are given below:

e gSys is the geometric constraint system;

* gis acircle/ellipse descriptor;

e cName is the radius type that takes the following values: GCE_RADIUS is the default value for a
circle; GCE_MAJOR _RADIUS or GCE_ MINOR RADIUS mean fixing the radius at the major or
minor ellipse axis.

The method returns the constraint descriptor that fixes circle/ellipse radius.

S.3.9. Angular Position Constraint

Angular position constraint is applicable to line and line segment types. In fact, this is a dimensional
constraint that creates a driving dimension fixing the angular position of a linear object in its initial state
relative to the OX axis in general sketch coordinate system. The angular position ranges from 0 to 2z. In
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order to fix a direction, call GCE_AddUnaryConstraint with GCE_ANGLE OX constraint type. Unlike
GCE_HORIZONTAL and GCE_VERTICAL, this constraint type does not permit to flip the line guiding
vector by 180 degrees. As this is a dimensional constraint, the line angular position can be changed by
calling GCE_ChangeDrivingDimension.

S.3.10. Tangency

Tangency is a geometric constraint that positions a pair of curves so that they would be tangent in one
point. Table S.2.15.1 shows supported tangency curve pairs.

Table S.2.15.1. Curve pairs supported by tangency constraint

Line Circle Ellipse Spline Parametric
curve
Line \ \ \ v
Circle V V V v V
Ellipse \ \ v
Spline V V \ v
Parametric curve |\ V

Selecting the tangency variant. Fig. S.3.10.1 shows two tangency examples for circle-circle and circle-
line pairs. Dashed lines indicate the circles with alternate tangency variants. The figure clearly demonstrates
that any tangency constraint has two solutions. For instance, circles may be tangent while remaining one
outside or inside another; in other example in Fig. S.3.10.1. the right side shows that there are two mutual
positioning variants for circle and line tangency: the circle can be "at the left" or "at the right" from the line.

Fig. 5.3.10.1.

The GCE geometric solver selects one of two tangency variants based on proximity to the preferred
solution. In fact, the tangent objects themselves indicate which of the two mutual positioning variants would
be chosen. When the constraint is formed, the solver "remembers" the current mutual position of the objects
and saves it when the sketch geometry would be further modified (see Item S.3.15. Mutual Object
Positioning).

Auxiliary tangency parameters. The above approach to the tangency variant selection is sufficient if
you are dealing with analytical curves (lines, circles, ellipses) only. For a curve with arbitrarily shapes, such
as a spline or a parametric curve, it is required to specify the tangency point location along the curve.

Fig.S.3.10.2. shows an example, where the mutual position of a line and a spline is already chosen (the
curves are co-directional in the tangency point). However, this variant also has its variants with other
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possible tangency point locations. The t1 and t2 variables taken in parametric spline domain indicate two
alternate tangency points for a spline and a segment with one fixed end.

Fig. 8.3.10.2.

To specify the locations of the tangency points on splines or parametric curves, it is required to add
auxiliary variables specifying suggested tangency point in the parametric domain of the curve. The most
common implementation of this process in end-user application is as follows. The user selects the tangency
object with a pointer, and pointer coordinates are considered as an approximation of the suggested tangency
point. If pointer coordinates are known, it is possible to approximately assess the tangency parameter (the
parameter of the closest point on the curve).

Creating a tangency constraint. A tangency constraint is defined by calling the following method:

constraint_item GCE_AddTangent( GCE_system gSys, geom_item g[2], var_item tPar[2] ).

The method input parameters are:
e gSys is the parametric sketch constraint system;
* g[2] are the descriptors of two curves;
* tPar[2] are the variable descriptors, these are auxiliary tangency parameters for the first curve and
the second curve.

The function returns a description of a new tangency constraint created for the given pair of curves. The
values of auxiliary parameters tPar[0] and tPar[1] are taken into account only if the first or second curve
correspondingly is a spline or a parametric curve. GCE NULL V empty descriptor should be passed for
analytical curves (line/circle/ellipse). For example, if both curves are analytical, then you can pass
{GCE_NULL _ V,GCE_NULL V} array to tPar. If the tangency is defined for a spline or a parametric curve,
then an auxiliary variable is created for the constraint by calling the GCE_AddVariable method. The initial
value of the variable would indicate the suggested tangency point in the parametric curve domain. It should
be noted that any variable, as well as geometric objects, is a subject of calculations, so its value would be
updated in all calculation requests of the solver (GCE_ Evaluate, see Item S.4.1. Calculating the Constraint
System), i.e. the solver would actually track the current value of the tangency parameter.

If tPar[idx] = GCE_NULL V for a spline or for parametric curve, then the tangency point location would
be determined automatically based on proximity to the initial position of objects.

S.3.11. Multiple and End Tangencies

The GCE geometric solver supports multiple tangencies, i.e. it is possible to set two or more tangency
constraints for one pair of curves if these curves include splines or parametric curves. Fig. S.3.16.1 shows a
horizontal line and a spline with two set tangency constraints that have various tangency points.
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Fig.S.3.11.1.

Please note that in the case, if the tangency pair contains only analytical curves (line, circle, ellipse), it is
possible to set only one tangency constraint for the same pair.

End tangency with G1 continuity is a specific example of tangency when a spline is involved, if the
tangency point coincides with one of the spline ends. In parametric drawing, the end tangencies create
smooth joints of two curves with G1 type continuity. Fig. S.3.11.2 shows smooth joints of a spline with other
curves.

G1-tangent

CIRCLE ARC

Fig. S.3.11.2.

The GCE_AddTangent method considers an end tangency of a non-closed spline, as a special case, and
automatically adds to the tangency a condition that spline end point belongs to other tangency curve.
Therefore, in general a tangency point can freely move along a spline, but in end tangency case the tangency
point is attached to one of the spline ends.

You can create end tangency using one of the following methods:

* Pass spline auxiliary parameter tPar[splineldx] equal to the parameter of spline start or end to the
GCE_AddTangent method.

e Call the GCE_AddTangent method without an auxiliary tangency parameter,
i.e. tPar[splineldx]=GCE_NULL V, but spline tangency endpoint should lie on other tangency
curve. This condition can be provided at the moment when the spline is created, or preliminarily
provide coincidence of the spline end with other curve by calling GCE_AddIncidence and then call
GCE_Evaluate.

S.3.12. Mirror Symmetry

Mirror symmetry constraint can be set for three geometric objects. The first and second objects are mirror
reflections of each other relative to the third object, it is a line that determines the symmetry axis.
A symmetry constraint can be created by the

constraint_item GCE_AddSymmetry( GCE_system gSys, geom_item g[2], geom_item 10bj ) method.

S.3.13. Bisector

Bisector constraint can be applied to three linear objects, if the first two linear objects divide the plane
into four sectors, and the third object is an axis that divides the selected sector in half. A bisector constraint
can be created by the
constraint_item GCE_AddAngleBisector( GCE_system gSys,
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geom_item 11, geom_item 12,
, geom_item bl,
GCE bisec_variant variant ) method.
The method has the following initial data:
* gSys is the geometric constraint system;
e 11,12 are a pair of straight-line objects that divide the plane into sectors;
* blis a bisector, line or line segment that divides the sector in halves between 11 and 12 lines;
* variant is one of three variants that determine the sector of the bisector:
* GCE _BISEC CLOSEST selects one of the bisector sectors based on the relative position of
objects in the initial state (see Item S.4.3. Initial Approximation);
* GCE _BISEC PLUS means that the bisector divides a sector indicated by the vector sum of
the directions 11 and 12;
* GCE_BISEC MINUS means that the bisector divides a sector indicated by a vector
difference of the directions 11 and 12;
The function returns the descriptor of a constraint declaring that bl is a bisector for a sector formed by the
11 and 12 lines.
Please note that this constraint does not lose its meaning if the lines 11 and 12 do not intersect. In this case,
the bisector divides a part of the surface between the lines 11 and 12 in two halves, and it lies on equal
distances from these two lines.

S.3.14. Middle Point

Middle point constraint can be applied to three points linked by the fact that the third point lies in the
middle of the segment formed by the first and second points. This constraint is created by calling the
constraint_item GCE_AddMiddlePoint( GCE_system geSys, geom_item pnt[3] ) method.

S.3.15. Mutual Object Positioning

The Item S.3.10. Tangency shows an example of tangency of a circle and a line that can have two mutual
positioning variants (Fig. S.3.10.1.). C3D Solver remembers the mutual orientation when it is created and
strives to maintain it during all further changes. A similar selection can be enabled for linear and angular
dimensions. For example, a linear dimension for a point and a line presumes that the point would always stay
on the same side of the line (relative to the normal) if the sign remains the same.

Mutual position of objects can be kept for such constraints, as tangency, linear and angular dimensions.
Other constraints, such as parallelism, perpendicularity, collinearity, etc., permit to change mutual positions.
For example, perpendicularity of two lines may transform a left vector pair into a right vector pair by
changing their mutual position. Therefore, the angle between their directions can be either 90 or 270 degrees.

505



S.4. CALCULATION OF TWO-DIMENSIONAL CONSTRAINTS

S.4.1. Calculating the Constraint System

The main task of C3D Solver is to satisfy the sketch constraint system, it is implemented using the
©  GCE result GCE_Evaluate( GCE_system gSys ) API function, the function returns the gSys
constraint system calculation
o result code.
o The function does not execute any calculation operations if all constraints are satisfied at the
time when it is called.
Returned values:

GCE_RESULT_Ok means that the constraint system is successfully resolved, and the solver assigned a new
state meeting all given system constraints to all geometric objects.

* GCE_RESULT_Overconstrained means that the function has discovered contradictory constraints
during calculation, i.e. the constraint system has a subset, in which the constraints can't be satisfied
at the same time. Geometry state remains unchanged.

*  GCE_RESULT _Not_Satisfied means that the function was not able to find a solution that meets all
specified constraints. Geometry state remains unchanged. This diagnostic code is returned in the
following situations:

A dimension is out of boundaries of the solution existence domain.

Positions of fixed or frozen points are out of boundaries of solution existence domain.

In rare cases it is caused by poor initial approximation. Meeting the constraints requires
considerable changes in parametric coordinates.

High mutual interference. For example, for such conditions if an angle is changed by one
degree, then the object would offset to a considerable distance.

In rare cases, this results from lack of numeric robustness caused by dramatic difference
between the dimensions of objects in one drawing, for example, when the smallest and the
largest sketch objects differ by more than 7 orders of magnitude (as when one ellipse is
1 mm long and the other one is 10 km long).

In general case, it can be caused by other situations when the solution doesn't exist or can't
be calculated.

*  GCE_RESULT InvalidGeometry. The found solution leads to degradation of geometry objects
(for example, a segment/arc has zero length, a circle/ellipse has zero radius). Geometry state remains
unchanged.

S.4.2. Changing or Rquesting the Geometry State

When the application works with geometric constraints, it can request the geometry state calculated by
the solver, and the solver, in its turn, can pass the state of object coordinates to the application.
The following functions request the geometry state:
GCE _point GCE_GetPointXY( GCE_system gSys,

geom_item g,
point_type pName = GCE_PROPER_POINT );

double GCE_GetCoordValue( GCE_system gSys, geom_item g, coord name cName );
double GCE_GetVarValue( GCE_system gSys, var_item var )
The following functions are used to pass the state of object coordinates from the application to the solver:

bool

GCE_SetPointXY( GCE_system gSys,
geom_item g,
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point_type pName,
GCE_point xyVal );
bool GCE_SetCoordValue( GCE_system gSys,
geom_item g,
coord name cName, double crdVal );
bool GCE_SetVarValue( GCE_system gSys, var _item var, double val );

S.4.3. Initial Approximation

Creating a parametric drawing involves incremental changes, adding or deleting objects and constraints,
as well as varying dimensions. Each new request for calculation of constraints system is based on the initial
state of geometric objects remaining as a result of the previous GCE_Evaluate request.

It should be kept in mind that an initial geometry state is an indispensable preliminary condition required
to satisfy the constraints. Two sketches that have the same set of geometric objects and constraints, but
various initial states, can have various solutions. C3D Solver takes into account the initial state and it tries to
satisfy all the given constraints with minimum deviations from the initial approximation and to change the
minimum number of objects.

The initial approximation plays the key role not only when the calculation is requested, but also when the
constraints are created. Mutual arrangement of geometric objects shows a constraint definition variant. For
example, if one circle is located inside another one, then when a tangency is added for the two circles
(GCE_AddTangent), then the solver would create such tangency when one circle would always remain
inside the other one. Mutual arrangement of geometric objects is described in more detail in Item S.3.15.
Mutual Object Positioning

S.4.4. Overdefined Consistent And Inconsistent Constraint Systems

In practice, many sketches are overdefined, as they contain redundant constraints. In the simplest case, the
constraints can be duplicated, for example, there can be two tangencies for one pair of circles. In more
general cases, an extra constraint is completely satisfied by other constraints that define the same geometric
condition. For example, if "perpendicularity” is set between two lines, "horizontality" is set for one line, and
"verticality" is set for another line at the same time, then any of these three constraints can be considered as
an extra one. C3D Solver excludes extra constraints from calculation. This overdefinition type is related to
consistent systems that permit extra constraints if they do not contradict each other.

Overdefinition may also cause the constraint system become inconsistent, if the redundant constraint
contradicts other constraints, i.e. it can't be satisfied together with other constraints. To correct this situation,
it is required to delete one of the constraints in the overdefined group. If an extra constraint causes the
system to  become inconsistent, then  the GCE_Evaluate method  returns the
GCE_RESULT_Overconstrained error code.

Blocked dimensions. It is recommended to avoid extra constraints even if it does not result in
contradictions. In particular, extra constraints may block the controlling dimensions created to add
constraints to the sketch. For instance, the left part of Fig. S.4.4.1 shows a parametric rectangle defined by
three driving dimensions (they are equal to 40, 40, and 60) and paired verticalities and horizontalities (V and
H symbols). In this example, the constraint system is overdefined, as it contains two V constraints, two H
constraints, and two dimensions equal to 40. The constraint chain is satisfied, but neither of two driving
dimensions equal to 40 can be changed separately without adequate change of the other one. To release the
dimension, it is required either to delete one of the dimensions equal to 40 or delete one of
horizontality/verticality constraints. The sketch on the right shows the solution that deletes verticality of the
upper segment. Then all dimensions can be changed. It should be noted that the dimension equal to 60 is not
included into the chain of extra constraints. It means that every overdefinition covers a group of constraints,
not always the whole sketch, but rather a part of it. Any dimension in overdefined group becomes blocked.
Diagnostics of blocked dimensions is described in Item S.4.10. Redundancy Test.
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Fig. 5.4.4.1.

S.4.5. Underdefined Constraint Systems

The item above (S.4.4.) discussed the overdefined state, when the constraint system has more constraints
than needed. This item is dedicated to other situation natural to drawing process: in the sketch there are
geometric objects not completely defined by constraints. In the beginning of the drawing process, the sketch
may have no constraints at all, and all geometric objects may have full degree of freedom. The more logical
constraints and dimensions are added to the sketch, the less degrees of freedom remains for the objects.
Completely defined sketch has no degrees of freedom at all. We should note that both situations can coexist
in one drawing; some part of the sketch can be overdefined, the rest can be underdefined and at the same
time some part of geometry may be completely defined.

Most solution methods available in C3D Solver were designed specifically for underdefined constraint
systems. Besides that C3D Solver uses some benefits of underdefined cases to split the whole constraint
system into a sequence of subsystems of smaller size calculated one after another. In these or other
underdefined cases, the solver selects one of the optimal solutions based on the following principles:

*  The number of geometric objects changed to satisfy the constraints should be as low as possible.
e Offset distances of the geometric objects modified by the solution from their initial approximation
should be minimal (see Item S.4.3. Initial Approximation).

S.4.6. Degree of Freedom Analysis

In the course of parametric drawing process, it is important to control, which parameters of the sketch
geometric objects are completely defined, and which parameters require additional constraints. The Item
S.4.5. Underdefined Constraint Systems described the principles used to select the solution for geometric
objects that do not have enough constraints to explicitly define their state. Degree of freedom analysis
functions show (visualize) underdefined geometric objects to the user. One of them calculates the degree of
freedom for a point:

GCE point_dof GCE_PointDOF( GCE_system gSys, geom_item pnt ).

This method permits to define the current degree of freedom for a point that can be a control point of any
geometric object, for example, circle/ellipse center, spline control point, one of segment ends, etc.

S.4.7. Information Requests

This item describes a number of functions used by the application to get various information on the
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objects registered in the constraint system, or diagnostic and calculation results. These functions were
designed for information requests, and their call does not change the state of the constraint system or its
particular data.
Geometry type. You can request the type of the geometric object registered in the constraint system by
calling the
geom_type GCE_GeomType( GCE_system gSys, geom_item g ) function,
that returns the enumerative type of the g geometric object registered in the gSys system. Returned values:
* GCE_POINT is a 2D point;
* GCE_LINE is a 2D line;
* GCE_CIRCLE is a 2D circle;
* GCE_ELLIPSE is a 2D ellipse;
* GCE_SPLINE is a 2D spline;
* GCE_PARAMETRIC_CURVE is a general 2D parametric curve;
* GCE _BOUNDED CURVE is a curve bounded by end points.
The list of data request functions is given below.
The base curve type is returned by the
geom_type GCE_BaseCurveType( GCE_system gSys, geom_item crv ) function.
Connectivity with constraints is evaluated by the
bool GCE_IsConstrainedGeom( GCE_system gSys, geom_item g ) function.
Constraint satisfaction is evaluated by the
bool GCE_IsSatisfied( GCE_system gSys, constraint_item cltem ) function.
Degenerated geometric objects are returned by the
std::vector<geom_item> GCE_DiagnoseGeometry( GCE_system gcSys ) function.
Currently set dimension value (not a measured value) is returned by the
double GCE_DimensionParameter( GCE_system gSys, constraint_item dItem ) function.
Compliance of the control point with the given coordinates is assessed by the
bool GCE_CheckPointSatisfaction( GCE_system gSys, geom item pnt, point type cp, double px,
double py ) function.
The current constraint solution state is returned by the
GceConState GCE_GetConstraintState( GCE_system, constraint_item gc_item ) function.
The state of the constraint system according to the latest solution results is returned by the
GceConstraintStatus GCE_GetConstraintStatus( GCE_system gSys ) function.

S.4.8. Dragging of Geometric Objects

This item describes the functions that implement interactive underdefined sketch manipulation mode that
is called dragging. Initialize dragging mode for an object control point:
GCE result GCE_PrepareDraggingPoint( GCE_system gSys,
GCE _dragging_point drgPnt,
GCE _point curXY ).
Initialize control point dragging mode for a set of objects:
GCE _result GCE_PrepareDraggingPoint( GCE_system gSys,
const std::vecfor<GCE_dragging point> & cPntArr,
GCE_point curXY ).
Initialize dragging mode for a set of objects:
GCE result GCE_PrepareMovingGeoms( GCE_system gSys,
std::vector<geom_item> & geoms,
GCE _point curXY ).
Move the dragging point:
GCE result GCE_MovePoint( GCE_system gcSys,
GCE_point curXY ).
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S.4.9. Geometric Transformation

C3D Solver permits to execute geometric transformation of parametric sketch based on a matrix that can
contain shift, rotation, and scaling. In order to execute the specified transformation, call the following
method for sketch constraint system:

GCE _result GCE_Transform( GCE_system gSys, const MbMatrix & mat )

Please take into account that this method transforms both the geometry and the constraints. For example,
linear dimensions can change their values if the transformation matrix contains scaling.

One should note that due to transformation result a part of constraints can become unsatisfied. You can
call the GCE_IsSatisfied function to check this. The constraints that remained satisfied are called invariant
constraints relative to this transformation.

S.4.10. Redundancy Test

C3D Solver provides various ways to evaluate the redundancy of constraints.

The methods

GCE result GCE_DeviateDimension( GCE_system gSys, constraint_item dItem, double delta )
GCE result GCE_DeviationTest( GCE_system gSys, constraint item dItem, double delta )
evaluate the redundancy of constraints based on dimension constraint deviations.
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S.5. TWO-DIMENSIONAL SPLINES AND PARAMETRIC CURVES

This chapter describes work with such curves as splines, general parametric curves and ellipses. The
common feature of all these curves is that C3D solver takes into account not only geometry of these curves,
but also their parametrization.

S.5.1. Spline Curves

C3D Solver uses NURBS curves as a mathematical basis for spline curves. NURBS presentation has de-
facto become an industry standard used to present free-form curves, and it is supported by almost all CAD
systems. The NURBS Book by Les Piegl and Wayne Tiller (Springer Publishing Company) is a widely
recognized canonical book in this subject domain.

C3D Solver offers two spline definition methods:

* A spline constructed based on a set of characteristic points defined by their coordinate values;
e A spline that passes through a set of interpolation points defined by descriptors of previously
registered geometric objects.

A spline can be created from a NURBS curve based on

geom_item GCE_AddSpline( GCE_system gSys, GCE _spline spl ) method.

The function accepts GCE_spline data structure that contains data defining the spline: the starting values
of control points, the interpolation point array (if required), weights, closedness indicator, etc.

A special constraint that fixes the spline derivative vector is created by

constraint_item GCE_FixSplineDerivative( GCE_system gSys, geom_item spline,
double par, uint derOrder, GCE vec2d * fixVal = NULL ) method;

S.5.2. General Parametric Curves

How to use parametric curves. One useful application of parametric curves is the case when the sketch
contains fixed curves with unsupported geometry type. For example, a planar sketch can be created in the
context of 3D CAD model, and then the sketch can receive 3D curve projections of arbitrary form from it.
The projection curves that are included in the constraint system as parametric curves permit to link sketch
geometry to projection objects. Parametric curves can also be used to layout drawings with the fragments
produced by projecting the geometry from 3D models that keep an associative link with it.

S.5.3. Constraints Based on Parametric Curves

The following methods are used to create special constraints for parametric curves, splines, and ellipses:
constraint_item GCE_AddPointOnPercent( GCE_system gSys,
geom_item curve,
geom_item pnt[3],
double k ),
constraint_item GCE_AddPointByMetricPercent( GCE system gSys,
geom_item curve,
geom _item pnt[3],
double k),
constraint_item GCE_AddFixCurvePoint( GCE_system gSys,
geom_item curve,
geom_item pnt ),
constraint_item GCE_AddPointOnParEllipse( GCE_system gSys,
geom_item pnt,
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geom_item ellipse, double t ).
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S.6. THREE-DIMENSIONAL GEOMETRIC SOLVER

This section describes another software component of the C3D Solver module — the three-dimensional
geometric solver. The three-dimensional geometric solver is applied for geometric modeling when you need
to arrange 3D-dimensional objects as a diagram of mutual relations and make them subject to geometric
constraints and dimensions. You may need this for the following tasks:

Merging solid body parts into assemblies;
Kinematic analysis, including an inverse kinematic task;
Solid body assembly animation;
Modeling 3D wireframes.
In combination with the collision detection component (see Chapter R.4. Body collision detecting) the
geometric solver helps CAD users assess the motion boundaries of mechanism parts.

S.6.1. Terms and Definitions

Local coordinate system (LLCS) — a coordinate system that determines a 3D object position with respect
to the World Coordinate System. LCS is specified by the origin point and three vectors — Z, X, Y axes that
are always orthonormal for C3D Solver tasks. The LCS definition is related to Transformation.

Geometric object — the main subject of the C3D Solver calculations. It is a 3D object, such as a point,
curve, surface, or LCS. C3D Solver supports a specific set of 3D geometry types listed in section S.6.4.
Supported geometry types. Note that solid body abstraction for C3D Solver is presented as a group of
geometric objects combined in a Cluster with a common LCS rather than a topological structure (C3D

Modeler). See section S.6.12. Geometric scene clustering, assembly modeling.

Standard position — LCS which has the same origin point and axes as the World Coordinate System.

Transformation — with respect to C3D solver tasks, transformation of a geometric object using a
combination of translations and rotations only. Mathematically, the transformation is presented in the form of
a square 4x4 matrix — the Transformation Matrix. It is convenient to use the transformation matrix for LCS
representation, bearing in mind that any LCS can be the result of transforming from the standard position
(see Standard position). Note that C3D Solver is used only for transformations that retain the distance
between any points of a geometric object. It means that C3D Solver does not support any transformations
that distort the orthogonality or normality of LCS vectors, for example, scaling.

Rigid set or Cluster — a subset of geometric objects within a common LCS that C3D Solver sees as a
geometric object being calculated. Clusters are used in a geometric model to represent solids and
geometrically rigid subassemblies. Any geometric object of the LCS type can be a cluster in the Solver.

Geometric constraint — a relation that determines a link between two, three or more geometric objects
that are called constraint arguments. Examples of geometric constraints: "line L is parallel to plane P",
"cylinder C is tangent to plane P", "distance between planes P1 and P2 is 10.0", etc.

Constraint argument — a geometric object or a numeric parameter connected by a geometric constraint
or dimension.

Geometric constraint system — a set of mutually related geometric objects. The geometric constraint
system formulates a GCSP (geometric constraint satisfaction problem) the purpose of which is to find
positions of 3D geometric objects that satisfy all the given constraints.

Initial approximation — coordinate values of all geometric objects and constraint system variables that
the solver considers a state close to the target solution. The initial approximation generally satisfies the
majority of constraints and is suggested as the starting condition of GCSP. The initial approximation also
defines the solution which C3D Solver selects for tasks with a non-numerable set of solutions (see Under-
defined constraint systems). C3D Solver may offer different solutions for the same system of constraints with
different initial approximations.

Geometric constraint satisfaction problem (GCSP) — a task to transform a set of geometric objects
with preliminary evaluations (Initial approximation) into a position that satisfies all the given constraints.
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In addition to the list of objects and constraints, the GCSP definition also includes the Initial approximation
that affects the solution result.

Three-dimensional geometric solver — a software component that solves the problem of satisfying
constraints for 3D objects. As part of the C3D Solver module, this component is technically referred to as
GCM (Geometric Constraint Manager). Another component, GCE calculates planar objects (see S1.Two-
dimensional geometric solver).

Well-defined constraint system — a geometric constraint system that has a single possible solution or a
finite range of solutions.

Inconsistent constraint system — a constraint system with no solution. A constraint system that has at
least one solution is, accordingly, referred to as Consistent.

Under-defined constraint systems — a geometric constraint system with infinite solutions.

Over-defined constraint system — a constraint system that includes constraints which, if removed, do
not affect the set of solutions or transform an inconsistent system into a consistent system. Redefined
constraint systems usually include unnecessary constraints, the removal of which either does not affect
anything or eliminates inconsistencies.

Dimensional constraint or Dimensions — a geometric constraint that includes a numeric parameter
argument that measures distance or angle between two geometric objects. The numeric value of this
parameter is called the Dimension value.

Distance dimension — a dimension constraint that measures the distance between points belonging to
two geometric objects. For instance, the distance between a point and a plane is measured as the distance
between the point and its nearest projection on the plane. Distance dimension value is always set using
distance measurement units (meter, millimeter, inch, etc.) and may have both positive and negative values,
including zero.

Angular dimension — a dimension constraint that measures the angle between two directions taken from
a pair of geometric objects. In other words, the angular dimension value is the angle of rotating the first
object vector to align it with the second object vector. For example, the angle between a line and a plane is
determined by the angle of the line rotation to be aligned with the plane using the shortest path. Angular
dimension values are set in radians.

Logical constraint — a geometric constraint that measures a boolean value: true if the constraint is
satisfied and false if the constraint is not satisfied. Examples of logical constraints: parallelism of two lines,
tangency between a cylinder and a plane, coaxiality of two cones, etc. Note that dimensions are not logical
constraints.

Parametric model — a geometric model making it possible to create to different instances of this model
by modifying independent numeric parameters (control parameters). The geometric constraint system may be
a parametric model if at least one driving dimension is set for it (see S.6.17. Driving dimensions).

S.6.2. Assigning the GCE geometric solver

Within the C3D geometric kernel, the three-dimensional geometric solver has an internal technical
designation — GCM (Geometric Constraint Manager). The GCM_ prefix in the names of functions and
data structures means that they are related to the three-dimensional solver API. The GCM component
calculates the position and coordinates of geometric objects that satisfy a predefined set of constraints and
dimensions, ensuring the integrity of the geometric model of an application. The GCM geometric solver is
used with such geometric objects as a point, line, plane, circle, sphere, cylinder, cone, toroid, or their
combination in rigid sets (Cluster). Positions of geometric objects may be subject to dependencies in the
form of constraints from a predefined set of types, including logical constraints: parallelism,
perpendicularity, tangency, coincidence, coaxiality, symmetry and various dimensions in distance and angle
measurement units.

The core functionality of the geometric solver GCM is available via the gecm_api.h header file. The
application interacts with the constraint solver based on simple C++ data structures; all these structures are
declared in the gecm_ types.h file.




S.6.3. Embedding the GCM component into an application

The GCM geometric solver is created as a multi-purpose 3D parametric modeling component. Therefore,
it can be embedded into any application where the functionality of dimensions and constraints should be
added to a 3D geometric model. The key feature is that integration with the C3D Solver does not require any
modifications in data structures of the application.

The software interface of the C3D Solver has its own abstract system of data types which is not related to
data types of the C3D Modeler module. Therefore, the application may either use or not use data C3D
Modeler data structures when working with the solver. Connecting the geometric solver to manage a
geometric model requires that the application interacts with the solver as follows:

L.

Create a geometric constraint system (see GCM_CreateSystem). This is the first thing to be done
to begin using C3D Solver.

Add objects to the constraint system. Add geometric objects to the system using
GCM_AddGeom, GCM_SubGeom calls (see S.6.9. Adding and deleting geometric objects ).
Descriptors (see Table S.6.6.1. Descriptor data types) that provide these functions are used for
storing the links of the application objects to C3D Solver's geometric objects. For optimal memory
use, we do not recommend adding objects unless they are connected by constraints.

Add geometric constraints to the system. Add constraints using the calls mentioned in S.6.10.
Adding and deleting geometric objects. Application constraints refer to C3D Solver constraints using
special descriptors (see Table S.6.6.1. Descriptor data types).

Solve the system of constraints. C3D Solver uses the GCM_Evaluate call to calculate a new state
of geometric objects that satisfy the previously declared constraints.

Apply the calculation results. Apply the calculated coordinates of objects from the C3D Solver
constraint system to geometric objects of the application. The calculated result is stored in the C3D
Solver. So, the application should update the state of its objects by requesting new coordinate values
from the solver.

Deleting objects and constraints. Once you have finished a constraint system session, the
application calls the GCM_RemoveSystem method. Also, during the life cycle of the constraint
system, you can individually delete constraints and objects when you no longer need them (see S.6.9.
Adding and deleting geometric objects

To adapt the geometric solver to native data types of the application, organize an interface between the
application and the GCM component. You can see a sample diagram of interaction between the constraint
solver and the application in Figure S.6.3./. The diagram suggests creating a special Constraint Manager to
solve the following tasks:

"Hides" the API C3D Solver behind it and provides an interface which is more convenient and
expressed in the native data of the application;

Loads data on 3D model objects and constraints to the solver (geometric problem definition);
Processes command queries such as adding/deleting data of the constraint system, and calculation
requests;

Ensures feedback from the solver, applies the results of C3D Solver calculations to the geometric
model of the application;

Updates the solver data for synchronization with the application model.
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Fig.5.6.3.1.

The diagram shown in Fig. S.6.3.1. is not mandatory. It simply demonstrates one of the options to
integrate C3D Solver with the application.

The GCM component does not permit saving user data in a document file, so an application developer
should take care of read/write permissions for the 3D model constraint system in the application document.

S.6.4. Supported geometry types

A geometric scene controlled by GCM is created as a set of geometric objects that belong to one of the
following types:

* Point

* Line

* Plane

e Cylinder or Cone
*  Sphere

e Toroid

* Circle

* Local Coordinate System (LCS)

The above-mentioned geometry types can be grouped to create geometrically rigid sets — clusters that
usually perform the role of a solid or subassembly in the application. In the constraint system, clusters are
registered using the LCS type (enum GCM_LCS value).

You can request the type of a geometric object registered in the constraint system by calling the

GCM_g type GCM_GeomType function ( GCM_system gSys, GCM_geom g )

with the following input parameters:

» gSys — descriptor of the geometric constraint system;
» g — descriptor of the geometric object that belongs to the gSys system.

The function will return one of the following values specified by enum GCM_g_type:



GCM_NULL_GTYPE |for an empty object (g = GCE _NULL);

GCM_POINT for a point;

GCM_LINE for a line;

GCM_PLANE for a plane;

GCM_CYLINDER for a cylinder;

GCM_CONE for a cone;

GCM_SPHERE for a sphere;

GCM_TORUS for a toroid,

GCM_CIRCLE for a circle;

GCM_LCS for a local coordinate system;
GCM_MARKER for marker in the form of <O,Z,X>;

GCM_SPLINE for a spline (not yet supported).

S.6.5. Supported constraint types

Any geometric constraint links geometric objects that are called constraint arguments. Any object
listed as a geometry type in section S.6.4. Supported geometry types can be used as a constraint argument.
For instance, a cylinder can be a tangency constraint argument. Constraints are classified as unary, binary
and ternary based on the number of geometry arguments. They link one, two, or three objects
correspondingly. Symmetry is an example of the ternary constraint — it includes two objects reflecting one
another and the reflection symmetry plane. Generally speaking, a constraint may have N arguments. Logical
constraints assume dependencies between geometric objects only. Dimensional constraints establish a link
between geometric objects and a numeric parameter (Dimension value) that measures the distance or angle.
Therefore, the last argument of dimensional constraints is always a numeric (scalar) argument. Types of
constraints supported by the GCM geometric solver can be found in Table S.6.5.1. Geometric constraint

types.
Table S.6.5.1. Geometric constraint types (enum GCM c type).

Constraint Arity
(number of arguments)

Designation in API

Logical constraints

Coincidence 2 GCM_COINCIDENT
Concentricity 2 GCM_CONCENTRIC
Parallelism 2 GCM_PARALLEL
Perpendicularity 2 GCM_PERPENDICULAR
Tangency 2 GCM_TANGENT

Mirror symmetry 3 GCM_SYMMETRIC
User-defined dependency N GCM_DEPENDENT

Dimensional constraints

Distance 2+1 GCM_DISTANCE
Angle 3+1 GCM_ANGLE
Radius 1+1 GCM_RADIUS

Pattern constraints

Dependency on a pattern

3+1

GCM_PATTERNED

Linear pattern (translational)

3

GCM_LINEAR_PATTERN




Angular pattern (rotational)

3 GCM_ANGULAR_PATTERN

Mechanical transmissions

Mechanical transmission

242 GCM_TRANSMITTION

Cam mechanism

242 GCM_CAM_MECHANISM

S.6.6. Basic data types of GCM solver API

The application interacts with the constraint solver based on simple C++ data structures; all these
structures are declared in the gem_types.h file. The key role is played by descriptor data types that identify
any objects controlled by the solver (see Table S.6.6.1. Descriptor data types).

Table S.6.6.1. Descriptor data types

Solver data type Implementation Interpretation

GCM_system void * constraint system descriptor
GCM_object struct { size_t id; } descriptor of computational object
GCM_geom GCM_object geometric object descriptor
GCM_constraint GCM_object constraint descriptor
GCM_pattern GCM_object pattern descriptor

Data types with finite enumerations of possible values are listed in Table S.6.6.2.

Table S.6.6.2. Enumeration data types

Solver data type Interpretation
GCM_g_type geometric object type
GCM_c_type constraint type

GCM_alignment

alignment variant

GCM_tan_choice

tangency variant

GCM_result

diagnostic code

GCE_scale

pattern scalability option

Data structures listed below (Table S.6.6.3.) are used to transfer the set of parameters when API
functions are called. For example, the GCM_g_record structure is used to transfer the geometric object type

and its positioning LCS to the solver.

Table S.6.6.3. Data structures

Solver data type Interpretation
GCM_vec3d 3D vector coordinates
GCM_POINT 3D point coordinates

GCM_g_record

geometric object record

GCM_extra_param

GCM_dependent_func call parameter

GCM_c_arg

geometric or numeric constraint argument

GCM_c_record

constraint record, its type and arguments




S.6.7. Geometric constraint system

The geometric constraint system is a set of geometric objects mutually related by constraints and
dimensions. Types of supported geometric objects and constraints can be found in paragraphs S.6.4.

Supported geometry types, S.6.5. Supported constraint types, respectively. The geometric model created in

an application is expected to have its own constraint system. From a software engineering viewpoint, this
means that each model is associated with the constraint system using the GCM_system descriptor type, and
each geometric object and constraint is represented by its unique descriptors of types GCM _ geom and
GCM_ constraint.

Before proceeding to work with geometric constraints, declare a constraint system for the model by
calling:

GCM_system GCM_ CreateSystem().
The function returns the empty constraint system as the GCM_system descriptor, which is a pointer to
internal data structure instance in the geometric solver. All further manipulations with the constraint system

will be performed using this descriptor. For example, if you want to declare a point, call the following
function for the created constraint system:

GCM_geom GCM_AddPoint( GCM_system gSys, MbCartPoint3D pVal )

The function returns a descriptor of the geometric point that belongs to the geometric constraint system
gSys. The pVal parameter defines the start <x,y,z> coordinates of this point.

When you finish work with the geometric model, always call the function that deletes its constraint
system:

void GCM_RemoveSystem( GCM_system gSys )

This function completely releases the memory occupied by the constraint system with all object and
constraint data. After calling the GCM_RemoveSystem function, the constraint system descriptor becomes
invalid, i.e. if you try to use the descriptor then the application might crash.

Function

void GCM_ClearSystem( GCM_system gSys )

clears the constraint system; it deletes objects and constraints only from the memory, but it keeps the
constraint system valid for further work.

Also, by calling
bool GCM_ReadSystem( GCM_system gSys, reader & in )

you can save the constraint system to the file stream while, calling
bool GCM_ WriteSystem( GCM_system gSys, writer & out ),

you can restore the complete system state. The functions for saving and recovering from the stream
ensure safe storage of descriptor values of all constraints and objects.

Warning! Read/write functions of the constraint system save only the data on objects and constraints that
are loaded onto C3D Solver. All source data on objects and model constraints are stored on the application
side. The application developer must take care to ensure the integrity of the data. GCM_ReadSystem,
GCM_WriteSystem functions may be useful in the following cases:

» Transfer of data from the application developer to the C3D Solver developer for debugging during
technical maintenance. See also paragraph S.6.18. Journalling API calls of the GCM solver where
journalling GCM calls for debugging and technical maintenance purposes is described;

* Converting native formats into a C3D file with a certain data loss;

* Temporary saving the constraint system state for various purposes (partial loss of data for such



constraints is possible, such as mechanical transmissions and GCM_DEPENDENT dependencies).

S.6.8. Reresentation of geometric objects

GCM three-dimensional geometric solver uses a certain representation of data of geometric objects
which is illustrated in Table S.6.8.1.. All objects are expressed in coordinates of points, vectors and numbers
(scalars) written in a form specific for each type.

Table S.6.8.1. Representation of geometric objects

Geometry type Symbol Tuple and its values
Point <x y z> — Cartesian coordinates of the point
Line <0 Z>
O — point on line;
0 Z — directing vector of the line.
Plane <0 Z>

O — plane point;
Z —normal vector of the plane.

Cylinder <O ZR>
O — point on the cone axis;
Z — directing vector of the axis.
R — cylinder radius.

Cone <O ZRa Rp>

O — center of the lower cone section;

Z — directing vector of the axis.

Ra, Rg — radii of the lower and upper sections of the
cone whose height is considered equal to 1.




Sphere

<O ZR>

O — sphere center;
R — sphere radius,

Toroid <O Z Ra Rp>

Circle z <O ZR>
O — circle center;
Z — direction of the circle axis;
R — circle radius.

Local <O0ZXY>

Coordinate

System O — LCS origin point;

Z XY — three unit vectors of the LCS.

Records of all these geometric objects can be unified in the form of the tuple of values:

where four values O Z XY define the object location in space, namely, its LCS determined by CS start
point and three axes Z, X, Y, while two scalar values R, Rg define the parameters of radial objects, such as

circle, cylinder, cone, toroid, and sphere.

A geometric object of any type has its associated local system of coordinates. Even a point or sphere
can be redundantly represented in LCS for which the directions of Z, X, Y axes do not matter, but
coordinates of the origin point O are important. Similarly, a plane has its own LCS, the origin point of which
is defined by the plane position, while the Z axis defines the plane normal. Here, the values of axes X, Y for

the plane are ignored.

In the software interface of the 3D solver, the unified form of recording <O Z X' Y R Rp> is used in

<O Z XY RaRp>,

the GCM_g_record structure, whose data fields can be found in Table S.6.8.2.:

Table S.6.8.2. Description of data fields of the GCM_g_record structure.

Data type

Data field

(geometrical meaning is specified in table S.6.8.1.)

Interpretation

GCM_g type

type

Geometry type.




GCM_POINT|origin Point of the geometric object positioning (origin of LCS, center of a circle or
sphere, etc.).

axisz Z axis of the local coordinate system (for example, axisZ is a directing
vector for a straight line).
6CM_vec3d axisX X axis of the local coordinate system.
axisyY Y axis of the local coordinate system.
radiusA Sets the radius of a circle, sphere or cylinder; sets the base radius for a cone,
double and the greater radius for a toroid.
radiusB Sets the lesser radius for a toroid or cone.

GCM _g record summarizes any geometry record. Therefore, some GCM g record data fields may
remain unused, depending on the geometry type. For instance, axisX, axisY fields are required only when
type = GCM_LCS, while they are irrelevant for such objects as plane, cylinder and toroid. The axisZ field
is not used for points and spheres. In other cases, however, it sets the orientation of an object in space.

The GCM solver's API supports the auxiliary functions GCM_Point, GCM_Line, GCM_Plane,
GCM_Cone, GCM_Cylinder, GCM_Circle, GCM_Torus, GCM_Sphere, GCM_SolidLCS making it
possible to fill the GCM_g record structure correctly. Details of these functions are given in section S.6.9.

Adding and deleting geometric objects

S.6.9. Adding and deleting geometric objects

The geometric solver mainly works with geometric objects, so, in starting to create the constraint system,
the application declares the geometric objects that will become constraint arguments in the constraint system.

Every geometric object declared in the constraint system will have its unique identifier — a GCM_geom
descriptor. Its geometric type (GCM_g type) remains unchanged throughout the object's life. API C3D
Solver calls that add geometric objects to the system are described below.

A point is added by calling

GCM_geom GCM_AddPoint( GCM_system gSys, const MbCartPoint3D & pVal )

The function returns a descriptor of the geometric point of the GCM_POINT type that belongs to the gSys
geometric constraint system. The pVal parameter sets the start values of <x,y,z> point coordinates.

To create geometric objects of other types, including a point, you should fill the GCM_g record data
structure which is a unified record for any geometry type supported by the solver. This structure value is the
input value of function

GCM_geom GCM_AddGeom( GCM_system gSys, const GCM_¢g_record & gRec )

The result of the call is the descriptor of the geometric object registered in the gSys system. Geometric
object parameters are specified by fields of the GCM_g_record structure:
* gRec.type sets the geometric type of the object (GCM_g type);

* gRec.origin sets the object's position and its LCS origin;

» gRec.axisZ sets the Z axis vector of LCS;

* gRec.axisX sets the X axis vector of LCS;

» gRec.axisY sets the Y axis vector of LCS;

* gRec.radiusA and gRec.radiusB set scalar parameters of radial objects.

See S.6.8. Reresentation of geometric objects for details of data representation in the GCM_g_ record
structure.

To conveniently and correctly fill the GCM_g record structure, the GCM component API supports the
auxiliary functions listed below:

Function
GCM g record GCM_Point( const MbCartPoint3D & )

performs actual conversion of the value of 3D point coordinates from the MbCartPoint3D data type into



GCM _g record, perceived by the GCM_AddGeom function.
GCM _g record GCM_Line( const MbCartPoint3D & org, const MbVector3D & axisZ )
returns the line record based on a point and directing vector.
GCM_g_record GCM_Plane( const MbCartPoint3D & org, const MbVector3D & axisZ );
returns the record of a plane defined by a normal point and vector.
Function for creating a cone record:
GCM g record GCM_Cone ( const MbCartPoint3D & centre, const MbVector3D & axis,
double radiusA, double radiusB )
Input parameters:
* centre — center of the base circle of the cone,
* axis — direction vector of the cone axis,
* radiusA — cone base radius,
* radiusB — cone section radius (lesser radius).

Cone parameters are assumed to describe a virtual truncated cone whose height is always equal to a
length unit, i.e. there is a unit distance between the cross section of radiusA and the radiusB section (see
figure in Table S.6.8.1.).

Function for creating a cylinder record:
GCM g record GCM_Cylinder ( const MbCartPoint3D & centre, const MbVector3D & axis,
double radius )
Input parameters:
* centre — a point on the cylinder axis;
* axis — direction vector of the cone axis;
* radius — cylinder radius.

Function for creating a circle record:
GCM g record GCM_Circle ( const MbCartPoint3D & centre, const MbVector3D & axis, double radius )
Input parameters:
* centre — circle center coordinates;
* axis — direction of the circle axis;
* radius — circle radius.

Function for creating a toroid record:
GCM_g record GCM_Torus ( const MbCartPoint3D & centre, const MbVector3D & axis,
double majorR, double minorR )

Input parameters:
* centre — toroid center coordinates;
* axis — direction of the toroid revolution axis,
* majorR — distance from the toroid center to the center of the generating circle of the toroid;
* minorR — radius of the generating circle of the toroid.

Function for creating a sphere record:
GCM_¢g_record GCM_Sphere ( const MbCartPoint3D & centre, double radius ).

Input parameters:
* centre — sphere center;
* radius — sphere radius.

Function for creating a rectangular right-handed coordinate systemL.CS:

GCM_¢g record GCM_SolidLCS(const MbCartPoint3D & org, const MbVector3D & axisZ,
const MbVector3D & axisX ).

Input parameters:
* org — coordinate system origin;
* axisZ — Z unit vector;
* axisX — X unit vector;

The result of the function is the LCS record in the form of <O Z X Y>, where axis Z is directed by vector
product XeY that corresponds to the right-handed orientation of X-Y-Z . The geometric type of the LCS
record is GCM_LCS.



Another method for creating the LCS record has the same name but its argument is MbPlacement3D:
GCM _¢g_record GCM_SolidLL.CS ( const MbPlacement3D & ).
This method allows creating both right-handed and left-handed CS.

The result returned by the GCM_SolidLCS function is used to create a solid body (cluster) in the
constraint system by calling GCM_AddGeom or GCM_SubGeom.

You can use the following call to create an empty GCM_g record record that can be used to create a
default value:

GCM_¢g record GCM_NullGeom( void ).
Below is the code fragment that demonstrates creating a system that includes the sph sphere with its

center in the CS origin and the cylinder eyl with its center coordinates <10, 0, 0> and oriented along the Z
axis.

GCM_system gSys = GCM_CreateSystem();

const MbCartPoint3D cylPos( 10.0, 0.9, 0.0 );
/*

Register two geoms, sphere and cylinder.
*/
GCM_geom sph
GCM_geom cyl

GCM_AddGeom( gSys, GCM_Sphere(MbCartPoint3D::origin, 10.0/*radius*/) );
GCM_AddGeom( gSys, GCM_Cylinder(cylPos, MbVector3D::zAxis, 10.0/*radius*/) );

/*

Finalize the constraint system to free its located memory.
*/
GCM_RemoveSystem( gSys );

In addition to the GCM_AddGeom call, the solver provides for another method to register geometric
objects providing for solid body abstraction — geometrically rigid sets with their own LCS. Such subsets are
called clusters. To create a cluster, declare its LCS using the following query:

GCM_geom lcs = GCM_AddGeom( gSys, GCM_SolidLCS(org,axisz,axisX) );

Values org, axisz, axisX set the cluster position and orientation (its LCS). The resulting lcs
descriptor will define the LCS of the geometrically rigid set whose elements are declared by the following
call:

GCM_geom GCM_SubGeom( GCM_system gSys, GCM_geom lcs, const GCM_g_record & gRec ).

Input parameters:
* gSys — geometric constraint system;
* lcs — cluster LCS descriptor;
* gRec — record of geometric parameters of the object defined in the cluster LCS.

The function returns the descriptor of the geometric object that belongs to the cluster. A specific feature of
the object that belongs to the cluster is that its location in space depends on the cluster's LCS. Thus, the
dependent object changes its location together with the cluster's LCS. This is its key difference from objects
created using the GCM_AddGeom method. Handling clusters is described in more detail in S.6.12.

Geometric scene clustering, assembly modeling.

Geometric objects returned by GCM_SubGeom and GCM_AddGeom functions may participate in
constraints and dimensions, i.e. they can be used as Constraint argument.

Geometric objects are deleted by the following call:

void GCM_RemoveGeom( GCM_system gSys, GCM_geom g ).

This method deletes the geometric object from the system and renders its descriptor g invalid. If a
geometric object remains an argument of one constraint at the moment when the system is called, it actually
remains in the system, but it will be inevitably deleted after deleting the last constraint associated with this
object. Therefore, the GCM API user can release a geometric object when it is no longer needed for the
application without paying attention to any binding constraints.



S.6.10. Adding and deleting geometric objects

You can use the following call to add the majority of geometric or dimension constraints:

GCM_constraint GCM_AddConstraint( GCM_system gSys, const GCM_g_record & cRec ).

It requires completion of the cRec data structure that stores the data on the cRec.type type and the
argument array of the cRec.args constraint. The function returns a descriptor of a new constraint registered

in the gSys system.

As an example, let us add a constraint right now — coincidence of point and plane:

GCM_system gSys = GCM_CreateSystem();

GCM_c_record cRec; // The record of point and plane coincidence.
cRec.type = GCM_COINCIDENT;

/*
Some point and plane as arguments of the coincidence.
*/
cRec.args[9]
cRec.args[1]
cRec.args[2]

GCM_AddPoint( gSys, MbCartPoint3D::origin );
GCM_AddGeom( gSys, GCM_Plane(MbCartPoint3D(©,0,1), MbVector3D::zAxis) );
GCM_NO_ALIGNMENT; // The alignment option doesn't matter in the point-plane case.

/*
Add coincidence to the system.
*/
GCM_constraint cItem = GCM_AddConstraint( gSys, cRec );

/*
Finalize the constraint system.
*/
GCM_RemoveConstraint( gSys, cItem );
GCM_RemoveSystem( gSys );

There is a certain sequence of completing args arguments in the GCM_c record structure for each
constraint type. In the above example, we have demonstrated that the first two elements cRec.args[0]
and cRec.args[1] of the GCM_COINCIDENT constraint are descriptors of the Coincidence constraint,
while the third element cRec.args[2] defines the alignment option.

GCM_c_record structure. The table below contains the template for completing the GCM_c _record
structure which is sent to the GCM_AddConstraint method for various constraint types.

Table S.6.10.1. Data argument types for various constraints (GCM_c_record completion)

Constraint type Argument types

type args[9] args[1] args[2] args[3] args[4]
GCM_COINCIDENT
GCM_CONCENTRIC
GCM_PARALLEL
GCM_PERPENDICULAR

GCM_geom GCM_geom GCM_alignment

GCM_TANGENT GCM_geom GCM_geom GCM_alignment |GCM_tan_choice

GCM_SYMMETRIC GCM_geom GCM_geom GCM_geom GCM_alignment

GCM_DISTANCE GCM_geom GCM_geom double GCM_alignment

GCM_ANGLE GCM_geom GCM_geom GCM_geom double GCM_alignment
(planar angle) (axis of rotation)

GCM_ANGLE GCM_geom GCM_geom GCM_NULL double GCM_alignment

(3D angle) (no axis)




GCM_RADIUS GCM_geom double

GCM_alignment is an option value considered in S.6.11. GCM_alignment option. GCM_tan_choice
values will be described in sections dedicated to the tangency constraint (GCM_TANGENT). Table S.6.10.1.
lists only interpretation rules for data types accepted by the GCM c arg element type in
GCM ¢ _record::args array for a certain constraint type.

Therefore, the GCM_c_record data structure is a unified method for setting a range of constraints using
only one method — GCM_AddConstraint. However, there are alternative ways to add constraints for
convenient development in GCM API that do not require completing the GCM_c¢_record structure.

You can use the following function to add any binary constraints that bind a pair of geometric objects:

GCM_ constraint GCM_AddBinConstraint( GCM_system gSys, GCM_c_type cType,
GCM_geom gl, GCM _geom g2, GCM_alignment aVal, GCM_tan_choice tVar );

Input parameters of the function:

* gSys — descriptor of the constraint system,;

* cType — type value from the following list: GCM_COINCIDENT, GCM_PARALLEL,
GCM_PERPENDICULAR, GCM_TANGENT, GCM_CONCENTRIC;
* g1, g2 — a pair of geometric object descriptors, binary constraint arguments;
* aVal — alignment option making it possible to select mutual orientation for objects (see S.6.11.
GCM_alignment option);
* tVar — tangency selection option for selecting a method for executing constraints of the
GCM_TANGENT type.

The result of the call is the binary constraint descriptor binding gl and g2 objects with the selected
alignment/tangency parameters aVal, tVar.

The dimension constraint of the GCM_DISTANCE type that defines the distance between objects is created
using the following call:

GCM_ constraint GCM_ AddDistance( GCM_system gSys, GCM_geom g1, GCM_geom g2,
double dVal, GCM_alignment aVal).

The call uses input data g1, g2, aVal — the same as for the GCM_AddBinConstraint function; numeric
value dVal — sets the dimension value.

The same algorithm is used for calls that define the angular dimension, mirror symmetry, and radial
dimension: GCM_AddAngle, GCM_AddSymmeric, GCM_FixRadius. They also do not require
completing the GCM_c_record transit structure.

S.6.11. GCM_alignment option

The constraint type (GCM_c_type) is the main feature of a constraint, which is sufficient to state if object
positions satisfy this constraint type or not. However, participation of orientable objects, such as a plane or
line, in the constraint allow for different variants of the same GCM_c_type type. For example, based on two
faces of a body within the same plane, we can state that they satisfy the coincidence constraint
(GCM_COINCIDENT). However, this statement allows for two coincidence variants, when normal face vectors
have the same direction or opposite directions. Figures S.6.11.1., S.6.11.2. demonstrate alternative alignment
variants for two bodies using the GCM_COINCIDENT constraint that binds a pair of colored faces.

GCM_COORIENTED




Fig. S.6.11.1.

GCM_OPPOSITE

Fig. S.6.11.2.

By default, the solver fulfill the coincidence and keeps the orientation of geometric objects as close to
their original state as possible (see Initial approximation). Therefore, one of the two variants is selected
automatically based on the minimum rotation principle. However, if necessary, a certain mutual orientation
of vectors can be implemented. For this purpose, GCM_AddBinConstraint, GCM_AddConstraint,
GCM_AddDistance methods support the GCM_alignment option, whose values can be found in the table.

GCM _alignment adds a condition to the constraint type info (GCM_c_type) that excludes any ambiguity
when selecting a solution for the constraint. GCM_COORIENTED and GCM_OPPOSITE values affect the
constraints with parallel Z vectors of their arguments. For example, perpendicularity of a plane and a line
means that normal vectors of the plane and the line are parallel. Another example: two coincident planes
mean that normals of their faces have either the same direction (Fig. S.6.11.1.) or the opposite direction (Fig.
S.6.11.2.). Other alignment option values are applied in more complicated cases together with such
constraints as tangency, linear and angular patterns, where the selection range includes more than 2 solutions.
For example, tangency of two toroids by their circles means eight solutions which, in addition to codirected
vectors, vary in the tangency side with respect to Z axes, and the location of one toroid outside or inside the
other.

Table S.6.11.3. GCM _alignment option values.
Name Value

GCM_NO_ALIGNMENT Unspecified orientation. The GCM_NO_ALIGNMENT value is applied
when a constraint is not affected by orientation of geometric objects (for
example, coincidence of two points) or when object orientation should
remain free. For example, if you specify GCM_NO_ALIGNMENT in
angular or linear patterns, the "sample" orientation will not affect the
"copied instance".

GCM_CLOSEST The solution is selected automatically. It should be as close to the initial
position of geometric objects as possible.

GCM_COORIENTED Sets cooriented Z vectors of constraint arguments.

GCM_OPPOSITE Sets opposite Z vectors of constraint arguments.

GCM_ALIGNED © Solution variants for constraints with cooriented Z vectors of constraint

GCM_ALIGNED_1 arguments (GCM_COORIENTED subvariants).

GCM_ALIGNED 2
GCM_ALIGNED 3

GCM_REVERSE_0 Solution variants for constraints with opposite Z vectors of constraint
GCM_REVERSE_1 arguments (GCM_OPPOSITE subvariants).

GCM_REVERSE_2
GCM_REVERSE_3

GCM_ALIGNED Creates the same orientation of LCS objects (coorientation along Z and
X axes) for such constraints as GCM_SYMMETRIC and
GCM_PATTERNED. This means that such constraints as symmetry,
angular and linear patterns with this option will orient the "copied
instance" in the same way as the "sample", and their positioning will
follow the respective rules for copying.

GCM_ROTATED It is applied for the GCM_PATTERNED constraint of the




GCM_ANGULAR_PATTERN angular pattern. This means that LCS of the
"copied instance" and the "sample" become fully coincident by rotating
the pattern around its axis.

GCM_ALIGN_WITH_AXIAL_GEOM |It is applied as an additional option for angular and linear patterns in
GCM_AddLinearPattern, GCM_AddAngularPattern functions.

In summary, GCM_alignment is an additional condition when GCM_c_type allows for more than one
variant of a constraint execution.

S.6.12. Geometric scene clustering, assembly modeling

The principle of hierarchy is the basis of the geometric model of the constraint system. This principle
means that geometric objects may be grouped as geometrically rigid sets called clusters. A Cluster is a
similar to such CAD abstraction of a geometric model as a solid or subassembly. Clusters may be grouped in
tree-structured hierarchies whose dependencies can be traced using the following function:

GCM_geom GCM_Parent( GCM_system gSys, GCM_geom subGeom ).

This function returns the cluster of the subGeom object registered in the gSys constraint system. If the
function returns zero descriptor GCM_NULL, it means that the requested object is not contained in any
clusters and was registered in the constraint using the GCM_AddGeom call. Geometric objects subordinate
to a cluster are created using another call — GCM_SubGeom (see S.6.9. Adding and deleting geometric
objects ).

Constraints within clusters. Geometric constraints and dimensions, as well as geometric objects, are
parts of the hierarchy of clusters. There is no need to expressly specify the level, at which a certain constraint
is calculated. The level is selected depending on which clusters its arguments belong to. When adding a
constraint, the solver selects the minimum-sized subsystem that includes all of its arguments. In other words,
the geometric constraint level is determined by the minimum subtree of the hierarchy that includes all of its
arguments. Fig. S.6.12.1. illustrates an assembly example with two dimensions to be calculated at various
hierarchy levels. The assembly consists of two parallelepipeds represented by Cluster]l and Cluster2, and
each of them combines the planes, edges, and vertices of each parallelepiped.

Cluster?

Cluster1

Fig. S.6.12.1.

The entire hierarchy consists of three constraint subsystems, calculated independently from the bottom up
(see Fig. S.6.12.2). There are two dimensions in the assembly: D1 — distance between Planel and Plane2 that
belong to the same Clusterl, D2 — distance between Plane2 and Plane3 that belong to different clusters
(Cluster1, Cluster2). In this case, D1 will be calculated in Cluster] of the cluster hierarchy, while dimensions
D2 will be calculated after D2 together with all constraints of the root assembly level. Therefore, the D1
calculation results will determine the size of one parallelepiped only, while D2 will affect the positioning of
two parallelepipeds with respect to one another.
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Fig. 5.6.12.2.

Thus, the constraint level is determined by the minimum subtree of clusters that includes all of its

arguments. In particular, if the constraint arguments are included in the same cluster, the constraint is part of
the same cluster. If the constraint arguments are included in different clusters, the level is selected that
constitutes the minimum subtree including all the constraint arguments.

The following is the source code that reproduces the case illustrated in Fig. S.6.12.1. This code is an

example demonstrating how the solver creates the cluster hierarchy shown in Fig. S.6.12.2.

GCM_system gSys = GCM_CreateSystem();
/*
Add LCS of the first cluster; it represents the first parallelepiped.
Also its two planes will be added.
*/
GCM_geom clusterl = GCM_AddGeom( gSys, GCM_SolidLCS(MbCartPoint3D::origin) );
GCM_FixGeom( gSys, clusterl ); // First cluster will have a fixed LCS.
const MbCartPoint3D orgl( 50.0, 0, @ ); // Position of "Planel" in LCS of the first cluster.
GCM_geom planel = GCM_SubGeom( gSys, clusterl, GCM_Plane(orgl, MbVector3D::xAxis) );
const MbCartPoint3D org2( -112.0, @, © ); // Position of "Plane2" in LCS of the first cluster.
GCM_geom plane2 = GCM_SubGeom( gSys, clusterl, GCM_Plane(org2, -MbVector3D::xAxis) );

/*
Set a distance dimension D1 between "Planel" and "Plane2".
(opposite sides of the parallelepiped, see figure S.6.12.1)

*/

GCM_constraint D1 = GCM_AddDistance( gSys, planel, plane2, -162.0 );

/*
Add LCS of "Cluster2" (the second box).
*/
const MbCartPoint3D pos2( -262.9, @, © ); // Position of the second cluster.
GCM_geom cluster2 = GCM_AddGeom( gSys, GCM_SolidLCS(pos2) );
const MbCartPoint3D org3( 50.0, @, @ ); // Position of "Plane3" in LCS of "Cluster2".
GCM_geom plane3 = GCM_SubGeom( gSys, cluster2, GCM_Plane(org3, MbVector3D::xAxis) );

/*
Set distance dimension D2 between "Plane2" and "Plane3".
(D2 defines a distance between the boxes, see figure S.6.12.1)

*/

GCM_constraint D2 = GCM_AddDistance( gSys, plane2, plane3, 100.0 );
/*
Dimension D2 can change the position of "Cluster2" relative to "Clusterl”.
*/
GCM_ChangeDrivingDimension( gSys, D2, 120.0 );
GCM_Evaluate( gSys );

GCM_RemoveSystem( gSys );

Cluster calculation order. Note that the cluster structure created as a result of the combination of

GCM_AddGeom and GCM_SubGeom calls strictly determines the order of constraint calculation.
Constraints of a single cluster are calculated at the same time but not before constraints of nested clusters



have been calculated. Thus, all clusters are calculated from the bottom up, from subordinate to superior,
including the root level.

S.6.13. Layout geometry (GCM_GROUND)

By default, the GCM solver has the Ground geometric object which is available using the constant
GCM_GROUND identifier. It is a static object with the following properties:

* Fixed LCS in a standard position (see Standard position), i.e. coincident with the World Coordinate
System,;

e It is a geometrically rigid cluster where you can add sub-objects, as well as constraints and
dimensions.

In the Ground object, you can conveniently position the entire fixed geometry of a scene. For example,
when modeling assemblies, the Ground object includes the entire geometry accepted as a fixed part, with
respect to which other assembly parts are positioned — they can be fixed or movable depending on
dimensions and constraints related to the Ground object. Normally, a 3D CAD model provides for O-X, O-Y,
O-Z base axes and planes of the World Coordinate System OXY, OYZ, OZX, that participate in constraints
and dimensions together with other objects. Such objects can be conveniently declared as part of the Ground
object.

For example, you can request the solver to display the O-X-Y plane of the World Coordinate System:
GCM_geom worldXY = GCM_SubGeom( gSys, GCM_GROUND, GCM_Plane(MbCartPoint3D::origin, MbVector3D::zAxis) )

where gSys — the assembly constraint system, worldXY — the descriptor of the O-X-Y plane of the World
Coordinate System. The worldXY plane now can be used as an argument for any constraint where a plane
can be used.

Thus, the Ground special object is an anchor which the basic geometry of a scene can be attached.

S.6.14. Fixing and freezing 3D geometric objects

Any geometric object created in the constraint system is initially free, i.e. it has all the degrees of freedom
inherent to a particular object type. During calculations, the C3D Solver may change the state of geometric
objects when it is needed to satisfy the constraints. Sometimes it is necessary to fix a part of geometric
objects so that the solver would leave the position of the geometric object unchanged. For this purpose, API
GCM supports two methods: GCM_FreezeGeom, GCM_FixGeom_, freezing and fixing. Both calls fix a
geometric object using different methods. Only the application can change the state of frozen and fixed
geometric objects using the GCM_SetPlacement call.

Freezing is convenient when you need to fix a geometric object for its entire lifetime or temporarily. For
example, when adding a new part to an assembly, it is convenient to bind it to other assembly elements from
the very beginning. You can position a part using constraints, but other assembly objects are better remaining
in the same places. Then, when adding an object we can freeze all assembly elements to which the new part
is being bound. Once the positioning is finished, the freezing is disabled. A geometric object can be frozen
using the following method:

void GCM_FreezeGeom( GCM_system gSys, GCM _geom g ).

Note that freezing is not a constraint. It makes the respective object fixed for the solver within the
coordinate system where the object was defined using GCM_AddGeom and GCM_SubGeom methods.
The result of the GCM_FreezeGeom call can be cancelled by calling

void GCM_FreeGeom( GCM_system gSys, GCM _geom g ),
which releases the g object and returns its degree of freedom.

An alternative method to fix a geometric object for the solver is to create a constraint that fixes the object
within the global coordinate system using the following function:



GCM__constraint GCM_FixGeom_( GCM_system gSys, GCM_geom g ).

The function returns the descriptor of the new constraint which totally fixes the g object within the World
Coordinate System. The result of this call is cancelled by the GCM_RemoveConstraint call, i.e. removed as
a normal constraint.

So, there are two aspects that differ freezing and fixing using GCM_FixGeom_:

* Freezing GCM_FreezeGeom removes degrees of freedom of the object without creating a new
constraint;

* If a frozen geometric object is added using GCM_SubGeom, the solver leaves its position fixed but
only within the LCS of the cluster where it had been declared; the Global degree of freedom of a
frozen sub-object is determined by the degree of freedom of its cluster.

S.6.15. Evaluating the constraint system

The main task of the three-dimensional geometric solver (see Geometric constraint satisfaction problem)
is performed by the following function:

GCM result GCM_Evaluate ( GCM_system gSys ).

The function calculates the new state of geometry and distributes error codes to those constraints that cannot
be satisfied. The function does not execute any calculation operations if all constraints are satisfied at the
time when it is called.

GCM_Evaluate will return the GCM_RESULT_Ok code, if an efficient solution is found for all input
constraints. Any other returned value means that the constraint system cannot be entirely satisfied. So, the
returned GCM_Evaluate value means either a success or a diagnostic code of one of the unsolved
constraints or another code indicating the reason for the failed solution. Diagnostic codes are described in
S.6.16. Diagnostic codes of a solution.

After the GCM_Evaluate call, each geometric constraint is assigned a diagnostic status. You can retrieve
it using the following call:

GCM result GCM_EvaluationResult( GCM_system gSys, GCM_ constraint cltem ).

The call will output one of the following values for each constraint:

* GCM_RESULT_None means that the constraint status is not defined, i.e. the constraint has not been
calculated yet.
* GCM_RESULT_Satisfied means that the constraint has been solved;

* GCM_RESULT_Overconstrained means that the constraint is part of a group of conflicting
constraints that cannot be all satisfied simultaneously. Generally, you can fix the situation by
removing one of the constraints;

* GCM_RESULT_Not_Satisfied means that the constraint is not satisfied (in the event when the
cause of a failed solution cannot be identified);

e GCM _RESULT Unsolvable means that the constraint cannot be solved. Possible reasons:
conflicting constraints, no required constraints to position objects (for example, in a cam
mechanism), poor initial approximation;

* GCM_RESULT_IncompatibleArguments means that the constraint is not applicable to objects
with these geometry types. For example, it is impossible to implement the coincidence of a plane and
a cylinder;

See S.6.16. Diagnostic codes of a solution for all GCM_result values.

Calling GCM_Evaluate changes the state of geometric objects. To make it possible for the application to
apply the results of calculations, you need to use the GCM_Placement function to request LCS values that
position objects.

Function

MbPlacement3D GCM_Placement( GCM_system gSys, GCM_geom g )




returns the position (LCS) of a geometric object g based on the current state of the geometric model. We
already mentioned in S.6.8. Reresentation of geometric objects that each geometric object has its own LCS,
even if it is a primitive like a point. LCS is convenient, since we can use it to express positions of all types of
objects, including not only solid bodies, but also simple objects, such as a point, line, and plane. Also a call
GCM_Origin can be used to request a point of the LCS. It is convenient when we deal with non-orientable
geometries such as point and sphere.

Another function, if applied to radial objects, such as a circle, sphere, or cylinder, will return the radius
value:

double GCM_Radius( GCM_system gSys, GCM_geom g ).

Also, by calling the following functions:

double GCM_RadiusA( GCM_system gSys, GCM_geom g ),

double GCM_RadiusB( GCM_system gSys, GCM_geom g )
you can retrieve the major and the minor radii of a toroid or cone.

The application is capable not only of requesting the current geometry state but also changing it in the
event of any modifications on the CAD model side that require synchronization of the geometric solver. For
this purpose, the following call is used:

void GCM_SetPlacement( GCM_system gSys, GCM_geom g, const MbPlacement3D & place ).
The call changes the current LCS value of the object.
Source call data:

* gSys — geometric constraint system;
* g — geometric object descriptor;
* place — new position (LCS) within the World Coordinate System.

Note that this function changes the object state without revaluating the constraint system. Using the
GCM_Evaluate call, you can change the defined state if there are any constraints that cannot be satisfied.

At any moment, you can request each constraint if it is satisfied or not using the following function:

bool GCM_IsSatisfied( GCM_system gSys, GCM_constraint cItem ),

which will return true, if the cItem constraint is satisfied in the current geometry state. The result of the
GCM_IsSatisfied call depends only on the current state of the constraint's geometric arguments and is not
related to its diagnostic status, returned using the GCM_EvaluationResult query.

S.6.16. Diagnostic codes of a solution

The table below lists the codes that output calculation results or results of executing the GCM API
component function. These values are results of such calls as GCM_Evaluate, GCM_EvaluationResult,
GCM_SolveReposition.

Table S.6.16.1. Enumeration type values GCM result

Resulting codes of executing the API solver functions

GCM_RESULT_None No result. For the GCM_EvaluationResult call, it means
that the constraint has not been calculated yet.

GCM_RESULT_Ok Executed successfully. The result of successful execution
of an operation or successful calculation of constraints.

GCM_RESULT_ItsNotDrivingDimension |Neot driving dimension. Failed attempt of the
GCM_ChangeDrivingDimension call for a constraint
which is not a driving dimension.

GCM_RESULT_Unregistered Invalid descriptor of an object or constraint. Case:
Calling API with a descriptor that does not belong to the
constraint system.

GCM_RESULT_Aborted Calculations aborted by the user request.




GCM_RESULT_InternalError
GCM_RESULT_Error

Program error (not mathematic). For situations related to
incorrect completion of an operation or incorrect data.

Results of the constraint system calculation

GCM_RESULT Satisfied

The constraint or constraint system has been
satisfied (= GCM_RESULT_0OKk).

GCM_RESULT_Overconstrained

The constraint redefines the model. The error
occurs in the event of conflicting constraints
(Inconsistent constraint system) within an over-
defined constraint system (defined constraint
system).

GCM_RESULT _Unsolvable

Unresolvable constraints. The error occurs in
various situations when no solution can be found.
Generally, it is caused by a set of constraints that
cannot be satisfied simultaneously (Inconsistent
constraint system) or when dimensions are outside
the range of acceptable values.

GCM_RESULT_Not_Satisfied

The constraint is not satisfied. The error code is
returned when constraints cannot be solved. Probable
causes of the failure:

* A dimension is outside the range of values making
a solution possible;

* Positions of fixed or frozen points are outside the
range of values making a solution possible;

* In rare cases, it is caused by poor initial
approximation. Satisfying the constraints requires
considerable changes in parametric coordinates;

* Strong mutual influences. For example, for such
conditions if an angle is changed by one degree, then
the object would be offset to a considerable distance.
* In rare cases, numeric instability due to wide
scattering of the order of coordinates being
calculated. For example, a geometric model includes
both microscopic objects (le-3) and large objects
(le+6).

* In the general case, this can be caused by other
situations when the solution does not exist or cannot
be calculated.

GCM_RESULT_MatedFixation

A geometric constraint is added between fixed or
frozen objects.

GCM_RESULT_InvalidArguments

Constraint arguments are not defined. Incorrectly
defined constraint when its arguments are empty
(argument descriptor = GCM_NULL).

GCM_RESULT_IncompatibleArguments

Incompatible arguments for this constraint type.
Incorrectly defined constraint when its arguments are
incompatible or this combination of arguments is not
supported. For example, an attempt to set the
coincidence of a plane and a cylinder.

GCM_RESULT_ InappropriateArgument

The argument type cannot be used for this
constraint. An incorrectly defined constraint when
one of its arguments cannot be used for this
constraint type. For example, an attempt to make
points and spheres parallel makes no sense.

GCM_RESULT_Duplicated

Duplicate constraint. The code indicates that the




constraint system contains two identical constraints.
Generally, this situation does not make it impossible
to calculate constraints.

GCM_RESULT_DraggingFailed
GCM_RESULT_InappropriateAlignment
GCM_RESULT_InconsistentAngleType
GCM_RESULT_InconsistentAlignment
mtResCode_UnsupportedTangencyChoice
mtResCode_IsNoPossibleForCircTanChoice
GCM_RESULT_InconsistentPlanarAngle

Diagnostic cases for the GCM_DEPENDED constraint

GCM_RESULT_DependentConstraintUnsolved
GCM_RESULT_CyclicDependence
GCM_RESULT_MultiDependedGeom
GCM_RESULT_OverconstrainingDependedGeoms
mtResCode_InvalidDependenceForFixGeom

Diagnostic codes for mechanical transmissions

mtResCode CoaxialMtGearTransmissionIsNotAvalable
mtResCode_NoSeparatedSolutionForCamGear
mtResCode_CyclicDependenceForTwoOrMoreCamGears
mtResCode_InconsistentFollowerAxis

S.6.17. Driving dimensions

Driving dimensions are dimension constraints that determine a distance or angle between two geometric
objects and, therefore, add numeric parameters to a geometric scene that control the positions of its objects.
By modifying the dimension parameters, you can control the model state and create different variants of
parametric model instances.

Driving dimensions can be created using the following calls: GCM_AddDistance, GCM_AddAngle,
and GCM_FixRadius. The main purpose of driving dimensions is to control the positions of geometric
objects using the numeric parameter of length, radius, or angle. Note, that constraints of patterns created
using the GCM_AddGeomToPattern method also relate to driving dimensions, since the pattern elements
are also characterized by numeric parameters that determine their linear or angular positions.

Function
GCM result GCM_ChangeDrivingDimension( GCM_system gSys, GCM_constraint dItem
, double dVal )
facilitates modification of any value of the dItem dimension and, therefore, control of the state of the
parametric model.

Input parameters of the call:

* gSys — constraint system of the parametric model;

* dItem — dimension constraint descriptor;

e dVal — new diameter value set in length units for distance dimensions or in radians for angle
dimensions.

Returned values:

* GCM_RESULT_Ok for successful operations;
* GCM_RESULT_ItsNotDrivingDimension means that the returned constraint is not driving
dimensions or a driving parameter, for example, if the constraint is a variational dimension.

* GCM_RESULT_None or GCM_RESULT_Unregistered are returned if the delivered gSys or dItem
descriptors are invalid.



Note, that this function does not calculate anything, just prepares the change of the driving dimension.
You should call GCM_Evaluate for the change to come into effect. If you need to modify two or more
driving dimensions at the same time, first make a series of GCM_ChangeDrivingDimension calls to each
of them and then call GCM_Evaluate once.

S.6.18. Journalling API calls of the GCM solver

C3D Solver enables recording of the history of API GCM calls for their further recreation during
debugging and testing. For example, if you need a consultation or encounter an application issue when using
C3D Solver, you can enable the journalling mode for a while and execute the scenario of interest. The
recorded journal can be forwarded to C3D Labs technical support with a description of your situation. When
the error is fixed, the corresponding log is added to the test case base.

API calls for the three-dimensional geometric solver are logged in the same manner as journalling for the
2D solver (S.1.14. API call journalling). When the journalling mode is enabled using the following call:

bool GCM_SetJournal( GCM_system gSys, const char * fName ),

the solver records the history of API calls with respect to the gSys constraint system. Then, the recorded
journal can be used by C3D Solver developers to analyze or update the test database.

Warning! The journal file will be ready only when a session of work with the constraint system is
finished, i.e. immediately after calling the GCE_RemoveSystem method. To correctly record the journal, the
GCM_SetJournal call must immediately follow GCM_CreateSystem. Example:

GCM_system gSys = GCM_CreateSystem();

#ifdef C3D_DEBUG
GCM_SetJournal( gSys, "d:\\Logs\\gcm_sample2.jrn" );
#endif // C3D_DEBUG

/*
Vertexes of the triangle A-B-C.
*/
GCM_geom A = GCM_AddPoint( gSys, MbCartPoint3D(138.0, -38.0, -31.90) );
GCM_geom B = GCM_AddPoint( gSys, MbCartPoint3D(67.0, -44.0, 51.0) );
GCM_geom C = GCM_AddPoint( gSys, MbCartPoint3D(20,30,10) );
/*
Set distance constraints of the sides of the triangle.
*/

GCM_constraint dl1 = GCM_AddDistance (gSys, A, B, 100.0, GCM_CLOSEST );
GCM_constraint d2 = GCM_AddDistance (gSys, B, C, 100.0, GCM_CLOSEST );
GCM_constraint d3 = GCM_AddDistance (gSys, C, A, 100.0, GCM_CLOSEST );

GCM_Evaluate( gSys );

/*

Finalize the constraint system. The journal file is written.
*/
GCM_RemoveSystem( gSys );

Warning! Journalling is required only for debugging, so it is recommended to enable it only in debug
mode. It is not recommended to leave journalling enabled for the application release version or product
version, as it can result in extra time and memory overheads.



T.1. DATA EXCHANGE WITH OTHER SYSTEMS

C3D Geometric Kernel Converters provide data exchange with other systems. In its turn, data exchange
process includes two tasks.

The first task is import. It means reading a third-party geometric model having one of exchange formats
from a file or a stream, and constructing a C3D geometric model from the received data.

The second task is export. It means representing the C3D geometric model in one of exchange formats
and recording this representation in the specified stream or file.

The most comprehensive data set that can be passed via converter contains the following:

1. Information about the shape that can be described by bodies, surfaces, wireframes and groups of
points.

Information about the model structure: specifying the components that can be reused in the model.
Item information: item ID, comments, information about its authors, etc.

Attributes: visual properties and elementary attributes.

A I

Annotation elements: dimensions, technical specifications, and designations.

The C3D Geometric Kernel supports six text formats and two binary formats. Four text formats (ACIS,
IGES, STEP, and X T) and X B binary format pass information about geometric shape of the simulated
object using a boundary representation. Two text formats (STL and VRML) and STL binary format use
polygonal representation to pass the geometric shape of the simulated object. The JT binary format provides
both boundary and polygonal representations.

T.1.1. Converter Operation Principles

In its work, the converter can use interfaces that can be divided into two groups. The first group includes
the interfaces implemented on the C3D side, and the second group contains the interfaces that should be
implemented by the user. Furthermore, the C3D geometric kernel provides a standard implementation of all
interfaces required to exchange data.

The interfaces correspond to the following concepts:

1. The converter (the IConvertor3D interface) is a special object used to transfer data. It is implemented
on the C3D side.

2. Converter properties (IConvertorProperty3D interface) serve to pass the exchange settings to the
converter. The interface has a standard implementation.

3. The document (ItModelDocument interface) is an object that contains the whole passed model. The
interface has a standard implementation.

4. Part(ItModelPart interface) and assembly (ItModelAssembly interface) are the model parts that can
be presented as details or as assembly units. The interfaces have a standard implementation.

5. Instance (ItModellnstance interface) is an object that defines how a component is positioned or
reused in the model. The interface has a standard implementation.

A component is a generic concept for a detail and for an assembly. It is assumed that a component can be
a minimal unit corresponding to a separate file handled by the end application. The use of components and
instances permits to form a model tree, and its components can be reused.

T.1.2. How to Work With the Converter

Converters provide means for export and import of models presented as both MbModel and user-
implemented documents OmmoOKa: HCTOYHHK MEPEKPECTHOM CCHIJIKM HE Hal/ICH.
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Group of functions for MbModel exchange using files is located in conv_i_converter.h and declared in the
c3d namespace.
MbeConvResType ImportFromFile ( MbModel & model,

const c3d::path string&  fileName,

IConvertorProperty3D * property = 0,

OmubKa: WCTOYHWK _ MEePEKPECTHOW  CCHUIKM _He HaklimeHn *

indicator =0 ),

MbeConvResType ExportIntoFile ( MbModel & model,
const c3d::path_string&  fileName,
IConvertorProperty3D * property = 0,

OmmbKa: WCTOYHMK _ NEPEKPECTHON  CChUIKU _HE HahaeH *

indicator =0).
Arguments of functions are:

* model model which is exported or replaced by imported,
* fileName is a full file path,

*  property are the converter properties,

* indicator is read/write progress indicator.

The exchange format's choice is based on file name's extension. The possible disagreement between the
fileName argument and value of the property.FullFilePath method is resolved in the following way. The
value of the property.FullFilePath is used only if fileName is empty and property is not null pointer.

The similar functions provide MbModel exchange using memory buffer.

MbeConvResType ImportFromBuffer ( MbModel & model,
const char*  data,
size t length,
MbeModelExchangeFormat modelFormat,
IConvertorProperty3D * property = 0,

Omnoka: HCTOYHUK HC[ZeK[)éCTHOﬁ CCBIIIKH HE HaﬁgeH *

indicator =0),

MbeConvResType ExportintoBuffer ( MbModel & model,
MbeModelExchangeFormat modelFormat,
char*& data,
size t& length,

IConvertorProperty3D * property = 0,

OmwmOKa: WCTOYHMK _ NEPEKPECTHOM  CChUIKW _HE HadjeH *

indicator =0).
Arguments of functions are:

* model model which is exported or replaced by imported,
* modelFormat — ¢popmar ooMeHHOTO (haiina,

e data is a buffer address,

* length is a buffer size,

*  property are the converter properties,

* indicator is read/write progress indicator.

The value of property.FullFilePath() is used to detect the exchange format only in case when modelFormat
is mxf autodetect and property is not null pointer.

To prevent memory leakage the buffer created and filled by ExportIntoBuffer must be deallocated by user.
The delete[] operator should be for deallocation.
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The next function automatically detects file format by extension and uses model document
ItModelDocument as a source of an imported model.

MbeConvResType ImportFromFile ( OmmOka: WCTOYHUK TEPEKPECTHOW CCBUIKM He HaineH &
document,

const c3d::path_string&  fileName,
IConvertorProperty3D * property = 0,

OmmOKa: WCTOYHHMK _ TEePEeKPECTHON  CChUIKM _He HaigeH *

indicator =0).
Arguments of function are:

* document is a document that passes the geometric model and other information,
* fileName is a full file path,

*  property are the converter properties,

* indicator is read/write progress indicator.

The Converter functionality is based on methods of the IConvertor3D class.

To get started with the converter, first receive its instance.

The
IConvertor3D * GetConvertor3D () function
is defined in global scope and it creates a converter that can import/export models using any supported
format. The function has no parameters. If successful, the function returns the converter, otherwise it returns
a null pointer.

The function is declared in the conv_i_converter.h file.

If the converter was created, then data are exchanged by calling converter methods. The following
converter methods:

MbeConvResType SATRead ( IConvertorProperty3D & property,

ItModelDocument & document,
std::iostream * stream,
IProgressindicator * indicator =0),
MbeConvResType SATWrite (IConvertorProperty3D& property,
ItModelDocument & document,
std::1ostream * stream,

IProgressindicator * indicator=0),
MbeConvResType SATRead ( IConvertorProperty3D & property,

ItModelDocument & document,
IProgressindicator * indicator =0,
MbRefltem * qeuryStitch=0),
MbeConvResType SATWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressIindicator * indicator =0,

MbRefltem * qeuryStitch=0),
MbeConvResType IGSRead ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator =0,
MbRefltem * qeuryStitch=0),
MbeConvResType IGSWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator =0,
MbRefltem * geuryStitch=0),
MbeConvResType JTRead ( IConvertorProperty3D & property,
ItModelDocument & document,
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IProgressindicator * indicator =0,
MbRefltem * qgeuryStitch=0),
MbeConvResType JTWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator =0,
MbRefltem * qeuryStitch=0),
MbeConvResType XTRead  ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator =0,

MbRefltem * qeuryStitch=0),
MbeConvResType XTWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
[ProgressIndicator * indicator =0,
MbRefltem * qeuryStitch=0),

MbeConvResType STEPRead ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator =0,
MbRefltem * geuryStitch=0),

MbeConvResType STEPWrite ( IConvertorProperty3D & property,
ItModelDocument & document,

IProgressindicator * indicator = 0,
MbRefltem * qeuryStitch=0),
MbeConvResType STLRead ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator =0,
MbRefltem * geuryStitch=10),

MbeConvResType STLWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressIndicator * indicator =0,
MbRefltem * geuryStitch=10),

MbeConvResType VRMLRead ( IConvertorProperty3D & property,
ItModelDocument & document,

IProgressindicator * indicator =0,
MbRefltem * qeuryStitch=0),
MbeConvResType VRMLWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator = 0,
MbRefltem * geuryStitch=0),

correspondingly import and export models using SAT, IGES, JT, X T, STEP, STL, and VRML formats.
The method input parameters are:

*  property are the converter properties,

* stream is a stream that receives or records an exchange format model,

* document is a document that passes the geometric model and other information,

* indicator is read/write progress indicator,

* geuryStitch is a requestor of surface stitching or measurement units during import (this is an obsolete
parameter, it is recommended not to use it; it is better to control stitching using the converter
properties).

If successful, the method returns cnv_Success, otherwise the method returns an error code from the
MbeConvResType enumeration.

When the work is finished, it is required to delete received converter instance.

The converter inherits the IConvertor3D class interface that is declared in the conv_i_converter.h file.
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T.1.3. IConvertorProperty3D Converter Property

A converter property (or simply a property) is one of data exchange method parameters. As single
IConvertorProperty3D interface is used to control converters of all formats, it contains both universal
methods for all formats and methods specific for some formats. Furthermore, data sets that control export
and import processes differ.

The universal methods can be used to get the exchange file path (if a stream is not explicitly set),
configure both filtration of sent objects by types and data exchange log.

const c3d::path_string FullFilePath () const;

bool GetloPermission( MbelOPermiss nPermission );

void GetloPermissions( std::vector<bool>& ioPermissions );

void LogReport( ptrdiff tid, eMsgType msgType, eMsgDetail msgText );

The methods called during export to any format provide information about the document as a whole,
about the coordinate system where the geometric model should be oriented, and also request whether it is
required to force transform exchange format objects to right coordinate systems while keeping their shape
and mutual positions, and length units scale factor all linear dimensions are multiplied by.

bool GetPropertyString ( MbeConverterStrings nString, std::string & propertyString );
MbPlacement3D GetOriginLocation();
bool ReplaceLocationsToRight();
double LengthUnitsFactor( );
The methods called during import of files of all formats and corresponds to length unit scale factor all
linear dimensions are multiplied by:
double AppLengthUnitsFactor( );

The methods called during import of SAT, X T, X B, JT, STEP and IGES formats permit or prohibit
automatic stitching of separate surfaces to bodies and indicate stitching precision:

bool EnableAutoStitch( double& stitchPrecision );

During import from IGES and SAT formats, a method is called that permits or prohibits the converter to
call the requester:

bool CanShowMessages();
Other methods are either specific for export to various formats or were introduced for debugging.

During export to Parasolid (X_T or X B selection) or STL formats a method is called that determines
whether the data would be represented in binary or text format:

bool IsFileAscii ();

For export to STEP, the methods with default implementation are called, they define text representation in
annotation elements and STEP application protocol that would be used:

eTextForm GetAnnotationTextRepresentation ();
MbelmpExpFormat GetFormat ();

For export to IGES format a method is called that determines whether the topology information would be
exported:

bool IsOutOnlySurfaces();
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For export to polygonal formats (STL and VRML) the methods with default implementation are called
that control triangulation calculation parameters:
MbStepData TesselationParameters();
bool DualSeams();
void DualSeams( bool dSeams );

During export into STEP and SAT formats the following method is called to specify the version of format.
It's default implementation returns the code of the last supported version.
long int GetFormatVersion ();
The following methods are used for debugging:
std::string GetDocumentName() const;
bool IsAssembling () const;
void SetloPermission( MbelOPermiss nPermission, bool setF );
void SetPropertyString ( MbeConverterStrings nString, const std::string & propertyString );
bool ExportComponentsSeparately().

The C3D geometric kernel provides a standard implementation of the IConvertorProperty3D interface.
The ConvConvertorProperty3D class is a standard implementation of the converter property, Fig. T.1.3.1.
The property inherits the IConvertorProperty3D class interface.

[IConvertorPropertyZiD ]

[ConvConvertorPropertyZiD j A
std::string docName
std::path string fileName
bool fileASCII
MbelmpExpFormat exportSTEPFormat
bool exportSTEPTopology
std::vector<bool> ioPermission
std::map<MbeConverterString, std::string> propertyString
eTextForm annotTextReprSTEP
MbPlacement3D oroginLocation
bool replaceLocationToRight
bool enableAutostitch
double autostitchPrecission
bool showMassages
MbStepData tesseleationStepData
bool dualSeams

Fig. T'1.3.1

The ConvConvertorProperty3D class stores the following information in its accessible fields: fileName is
the path to the exchange file; docName is the document name; fileASCII is a text file export indicator;
exportSTEPFormat is a STEP export format protocol; exportlIGESTopology is a flag indicating topology
export to IGES format; ioPermission is the object type filter; propertyStrings is special information about
the document; annotTextReprSTEP is annotation element text representation; originLocation is the local
coordinate system of the model; enableAutostitch is a face stitching flag; autostitchPrecision is a face
stitching precision; tesseleationStepData are triangulation parameters; showMessages is the control
parameter for requestor calls; dualSeams is seam stitching flag and logRecords is a data exchange log code
container.

The ConvConvertorProperty3D class fields have the following default values:
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* docName and fileName are empty lines,
* fileASCII is true,
» formatVersion format version on export (default value is EXPORT DEFAULT),
* exportIGESTopology is true,
* ioPermission permits to export/import objects of any type,
e propertyStrings is an empty container,
* annotTextReprSTEP is exf TextOnly,
* originLocation is a default value,
e enableAutostitch is true,
e autostitchPrecision is 0.3,
* tesseleationStepData is a default value,
* showMessages is false,
¢ dualSeams is true,
* logRecords is an empty container.
The IConvertorProperty3D interface is declared in the conv_i_converter.h file.
The ConvConvertorProperty3D class is declared in the conv_model properties.h file.

T.1.4. ItModelDocument Model Document

The ItModelDocument interface is one of the interfaces that permit to send data with complex tree-like
structure and many components, and its components are reusable. The document provides two operation
modes for a model. In the first one, the model generated by the C3D Geometric Kernel objects is used
directly. In the second one, the user implements the ItModelPart, [tModelAssembly, ItModellnstance
interfaces and the methods that work with implementations. In its turn, the converter calls interface methods
of the returned objects.

The interface methods can be grouped as described below.

The following group of methods was designed for direct work with the model and annotation element
container:

void SetContent( Mbltem* content);

Mbltem * GetContent();

map of visual items GetAnnotationltems( eTextForm form );

void SetAnnotationltems( const map of visual items& visltems );

Interface-oriented methods are correspondingly divided into the following subgroups.

The group of methods was designed to generate the model during import:
SPtr<ItModelAssembly> CreateAssembly( const std::vector< SPtr<Mbltem> > & componentltems, const
c3d::path_string& fileName );
SPtr<ItModelPart> CreatePart( const std::vector< SPtr<Mbltem> > & componentltems, const
c3d::path_string& fileName );
bool FinishImport( [Progressindicator * indicator );

The following group of methods was designed to get linked model components during export:
bool IsAssembly();

bool IsEmpty();
SPtr<ItModelAssembly> GetInstanceAssembly( );
SPtr<ItModelPart> GetlInstancePart( );

The following methos is used for debugging:
void OpenDocument();

It is not known in advance which particular implementation would be used to send data, so both the
SetContent method and one of the CreateAssembly or CreatePart methods (depending on import result)
are called during import. Export process starts with call of the GetInstanceAssembly or GetInstancePart
method (depending on the result of IsAssembly call), and the GetContent method is called only if the
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converter is unable to generate the model.

In the model generated using the C3D Geometric Kernel objects, some Mbltem objects correspond to the
components. This defines the structure and the content of annotation element container, the latter is handled
by GetAnnotationltems and SetAnnotationItems methods.

There is a standard implementation of the ItModelDocument in the C3D geometric kernel. The
C3DModelDocument class implements the interface, and the corresponding implementations of [tModelPart,
ItModelAssembly, ItModellnstance interfaces are hidden. For export the model can be set directly using the

SetContent method or generated in a standard way using [tModelAssembly or ItModelPart calls. After

import user can call the GetContent to get the generated model.

The ItModelDocument interface is declared in the conv_i converter.h file. The C3DModelDocument
implementation and it's aliases RegularModelDocument and ConvModelDocument are declared in the
conv_model properties.h file.

T.1.5. IProgressIndicator Progress Indicator

The progress indicator (or simply the indicator) provides feedback from the converter to the user. The
converter calls various methods when it exchanges data.
The following method sets step range, step size and information displayed about the process:
bool Initialize(size t range, size t delta, IStrData & massage).
The following method informs that a certain number of steps were completed:
bool Progress(size t n).
The method returns a flag indicating whether it is required to continue the operation.
The following method determines whether the operation should be terminated on user request:
bool IsCancel().
The method below informs the user that the operation is completed:
void Success().
The following method informs the user on abnormal process termination:
void Stop().
The user can specify the method that sends information on the need of forced process termination. The
user is suggested to implement the following method as a standard one:
void SetCancel( bool cancel ).
The IProgressIndicator interface is declared in the conv_i_converter.h file.
In the test application, the ProgressIndicatorlmp class is one of possible indicator implementations.

The Progressindicatorlmp class is declared and implemented in the test converter.cpp file of C3D
Geometric Kernel test application.

T.1.6. Model Tree Architecture

The following conventions are accepted for a model generated using the C3D Geometric Kernel objects.
* A document is equivalent to a root component (top-level component).
» If a boundary representation format is used, then any component should have a corresponding
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MbAssembly type object. If a polygonal representation format is chosen, then MbMesh object can
be used as a component. It is expected that any component was assigned certain properties, so each
component should have the MbProductInfo and MbPersonOrganizationInfo type attributes.

The own objects of the component can belong to the MbSolid, MbWireFrame, MbPointFrame,
MbSpacelnstance and MbPlanelnstance types for boundary representation formats, and to MbMesh
type for the polygonal representation formats stored in MbAssembly.

Component nesting and positioning is implemented using Mblnstance objects. Mblnstance is stored
in the top-level component and it refers to a bottom-level component. Cyclic dependencies are not
permitted.

The approach based on generating data exchange model by the C3D Geometric Kernel components has
several drawbacks. The most important drawback is that the use of specific objects and configurations
impedes the functionality development: for any changes, all users should implement corresponding changes.
If model, component, and instance interfaces are implemented on the user side, then the users no longer
depend on specific implementation.

In terms of interfaces, the architecture can be described as follows.

The ItModelDocument contains a top-level component.

There are two component types: ItModelPart details and [tModelAssembly assemblies. They differ
only in interpretation, both types can refer to lower-level components.

The MbSolid, MbWireFrame, MbPointFrame, MbSpacelnstance, and MbPlanelnstance objects can
be own objects of the components.

Component nesting and positioning is implemented by means of ItModellnstance objects. Cyclic
dependencies are not permitted.

T.1.7. ItModellnstanceProperties Model Element Properties

ItModellnstanceProperties is a basic class; it is an ancestor of ItModelPart, [tModelAssembly, and
ItModellnstance interfaces. The methods declared in this interface can be grouped as follows.

The first group of methods sends information about the component.

The following methods send item ID:

std::string  Name(),

bool

SetName( const std::string& name ).

The following methods send item designations:

std::string  Marking(),

bool

SetMarking( const std::string& marking ).

The following methods send information about item author:

std::string  Author(),

bool

SetAuthor( const std::string& author ).

The following methods send information about the organization:

std::string  Organization(),

bool

SetOrganization( const std::string& organization ).

The following methods send comments:

std::vector< std::string> GetComments(),

bool

SetComments( const std::vector< std::string>& comments ).

The second group of methods sends visual properties.
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The following methods are designed to send own visual properties of component or instance:

bool GetColor( MbAttributeContainer& visual ),
bool SetColor( const MbAttributeContainer& visual ).

The methods below send the visual properties of objects belonging to any element, for example, body
faces:

bool GetColor( MbAttributeContainer& visual, const MbName& name ),
bool SetColor( const MbAttributeContainer& visual, const MbName& name ).

The following methods send visual properties of objects belonging to the component (for example, a body
with a given index):

bool SetColor( const MbAttributeContainer& visual, size t index ).

The third group of methods sends technical specifications applied to components. The following methods
are included in this group:

void GetRequirements( vector of annotation& annot, eTextForm textRepr ),
void SetRequirements( const vector of annotation& annot ).

T.1.8. ItModelPart and ItModelAssembly Components

The ItModelPart and [tModelAssembly interfaces have a similar set of methods, so you can consider them
identical, the only distinction is the interpretation. Component properties, visual properties, and technical
specifications are assigned using [tModellnstanceProperties basic class methods.

The PureFileName() method is called during export and it returns a line that indicates component file
name.

Own objects are handled by the following method group:

void Getltems( std::vector< SPtr<Mbltem> > & items,
MbeGettingltemType itemType,
bool includelnvisible ),

void AddItems( const std::vector< SPtr<Mbltem> > & items ).

The Getltems method was designed to deliver elements to the container using type and scope filters that
are generated on the basis of values returned by the IConvertorProperty3D:: GetloPermission method. The
AddItems method is used for import and it was designed to add elements in the component.

The following methods were designed to work with instances:

SPtr<ItModellnstance> Preparelnstance();
SPtr<ItModellnstance> NextInstance( bool includeInvisible ).

The Preparelnstance method was designed to insert a component during import. The NextInstance
method is an instance iterator during export. It is assumed that the iterator is ready to deliver instances from
the start. The cycle ends when a null pointer is returned. During the walk-through, the scope filter value
corresponds to the result of calling the IConvertorProperty3D:: GetloPermission (iop_wInvisible) method.

The following pair of methods gets and sets annotation elements during export and import
correspondingly:

vector_of annotation GetAnnotationItems( eTextForm textForm,

bool includelnvisible ),
void SetAnnotationltems( const vector _of annotation & annot ).
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The GetAnnotationItems( eTextForm textForm ) method is not called in converters.
The [tModelPart and [tModelAssembly interfaces are declared in the conv_model properties.h file.

T.1.9. ItModellnstance Instances

For historical reasons, the ItModellnstance instance interface was inherited from
[tModellnstanceProperties. It was preserved for compatibility. According to this approach, only its own
visual properties can be assigned to an instance.

The void * Getld() method permits to differentiate the instances of equivalent components. If various
instances return the same value, then the equivalence is determined based on content analysis results. During
export, the converter is eager to optimize the model by reuse of equivalent components. In order to reduce
calculation costs during export, a user can also provide information which components are definitely non-
equivalent.

The following methods are used during export to get such instance data, as local instance coordinate
system, instance contents, and instance emptiness:

bool GetPlacement( MbPlacement3D & place ),
bool IsAssembly(),
bool IsEmpty().

If the instance is non-empty, then one of the following methods is called based on the result of the
IsAssembly() method:

SPtr<ItModelAssembly> GetInstanceAssembly/( ),
SPtr<ItModelPart>  GetlnstancePart( ).

These methods return the interface of the component referenced by the instance.
The following methods create components during import:

SPtr<ItModelAssembly> CreateAssembly( const MbPlacement3D &place,
const std::vector<SPtr<Mbltem> > & componentItems,
const c3d::path_string& fileName );
SPtr<ItModelPart> CreatePart( const MbPlacement3D &place,
const std::vector< SPtr<Mbltem> > & componentItems,
const c3d::path_string& fileName );

As a result, these methods return a component interface, its location in top-level component is described
by place local coordinate system, the component is filled with elements from the componentItems
container, and fileName contains a corresponding file name.

The methods listed below add previously created components to an instance:

bool SetAssembly( const MbPlacement3D & place, const [tModelAssembly * existing ),
bool SetPart( const MbPlacement3D & place, const [tModelPart * existing ).

The location of the existing component is defined by the place local coordinate system.
ItModellnstance interfaces are declared in the conv_model properties.h file.
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T.2. BOUNDARY REPRESENTATION CONVERTERS

The C3D Geometric Kernel can read ACIS, IGES, STEP, X T, and X B files, construct an internal model
on their basis, and write the internal model using the listed formats. The ACIS, IGES, STEP, and X T text
formats and the X B binary format pass information about the geometric shape of the simulated object using
boundary representation. The bodies represented by faces, edges, and vertexes are used in the boundary
representation to describe the geometric shape.

T.2.1. General Description of the Boundary Representation Converter Functions

Special functions defined in the global scope differ from the converter methods (described in Item T.1.2)
in that they have the following limitations that are minor in most cases: they do not work with streams and
they do not accept surface stitching requester as an argument.

All functions have the same signature type: they accept both the IConvertorProperty3D converter
properties (described in Item T.1.3. IConvertorProperty3D Converter Property) and [tModelDocument model
document (described in Item T.1.4. ItModelDocument Model Document) as arguments, and also the
[ProgressIndicator progress indicator (described in Item T.1.5. [Progressindicator Progress Indicator) as an
optional parameter. The behavior of all functions is also similar: all functions receive a converter instance,
call one of its methods, and delete the converter when they finish. If successful, the functions return
cnv_Success, otherwise they return an error code from the MbeConvResType enumeration.

T.2.2. General Information About Boundary Representation Converter
Parameters

When the converter sends data, it calls the FullFilePath, GetloPermission, GetloPermissions,
LogReport methods of the IConvertorProperty3D interface.

For import the converter calls the EnableAutoStitch method of the IConvertorProperty3D interface.

For export the converter calls the GetPropertyString, GetOriginLocation, ReplaceLocationsToRight
methods of the IConvertorProperty3D interface.

In standard implementation of the ConvConvertorProperty3D interface (it is described in Item T.1.3.
IConvertorProperty3D Converter Property), the fileName field should contain correct full path to the
exchange file. Default values of other fields guarantee that the methods work correctly. For export the file
will be created or automatically rewritten if there are no limitations from the file system.

A standard RegularModelDocument or ConvModelDocument implementation can be selected as a model
document. It is preferable to use the latter one if you need to pass item data using the STEP exchange format
with as much details as possible.

It is permitted to pass a null pointer as a progress indicator.

T.2.3. Importing Models in SAT Format

The function
MbeConvResType SATRead ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressIndicator * indicator )
imports SAT geometric model (up to version 22.0).
The input and output method parameters are:
e property are the converter properties,
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¢ document is the model document,
* indicator is a read/write progress indicator.

If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.

General import settings are described in Item T.2.2. General Information About Boundary Representation
Converter Parameters. Though the SAT converter calls the IConvertorProperty3D::CanShowMessages
method, the returned value does not affect anything as there is no scale requester.

The geometric model is either a single component containing MbSolid objects, or one-level assembly
having components that contain bodies. Designations of non-root components, visual properties and
elementary attributes of faces, edges, and vertexes are imported.

SATRead function example use is absent. To demonstrate import from SAT, the test application uses
IConvertor3D converter method, where a stream is explicitly defined.

T.2.4. Exporting a Model to SAT Format

The function

MbeConvResType SATWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressIndicator * indicator )
exports the geometric model to the SAT 2.0 format.
The input and output method parameters are:
* property are the converter properties,
¢ document is a document that passes the geometric model and other information,
* indicator is a read/write progress indicator.

If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.

General import settings are described in Item T.2.2. General Information About Boundary Representation
Converter Parameters.

For export, models with several components are transformed in one-level assembly that keeps its shape.
Reused elements are duplicated. MbSolid objects only are exported to SAT format. Designations of non-root
components, visual properties and elementary attributes of faces, edges, and vertexes are exported.

SATWrite function example use is given in the test_converter.cpp file of the C3D Geometric Kernel test
application.

T.2.5. Importing a IGES Model

The function

MbeConvResType IGSRead ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressIndicator * indicator)
imports IGES 5.3 geometric models.
The input and output method parameters are:
*  property are the converter properties,
* document is a document that passes the geometric model and other information,
* indicator is a read/write progress indicator.

If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.

General import settings are described in Item T.2.2. General Information About Boundary Representation
Converter Parameters. Though the IGES converter calls the IConvertorProperty3D::CanShowMessages
method, the returned value does not affect anything as there is no surface stitching requester.

The imported model can have arbitrary nesting degree and it can contain MbSolid, MbWireFrame,
MbPointFrame type objects. Information about root component author and organization, designations of
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non-root components, visual properties of body faces and wireframe structure edges are imported.
IGSRead method example use is given in the test_converter.cpp file of the C3D Geometric Kernel test
application.

T.2.6. Exporting a Model to IGES Format

The function

MbeConvResType IGSWrite ( [ConvertorProperty3D & property,
ItModelDocument & document,
IProgressIndicator * indicator)
exports the geometric model to the IGES 5.3 format.
The input and output method parameters are:
* property are the converter properties,
* document is a document that passes the geometric model and other information,
* indicator is a read/write progress indicator.

If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.

General import settings are described in Item T.2.2. General Information About Boundary Representation
Converter Parameters.

The exported model can have arbitrary nesting degree and it can contain MbSolid, MbWireFrame,
MbPointFrame, MbSpacelnstance, MbPlanelnstance objects. Information about root component author and
organization, designations of non-root components, visual properties of body faces and wireframe structure
edges are exported.

IGSWrite method example use is given in the test converter.cpp file of the C3D Geometric Kernel test
application.

T.2.7. Importing X T and X B Models

The function

MbeConvResType XTRead (  IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator)

imports the geometric model in Parasolid formats (text-based X T format and binary X B format).
Versions up to 25.0 are supported.

The input and output method parameters are:

*  property are the converter properties,
* document is a document that passes the geometric model and other information,
* indicator is a read/write progress indicator.

If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.

General import settings are described in Item T.2.2. General Information About Boundary Representation
Converter Parameters.

The imported model can have arbitrary nesting degree and it can contain MbSolid type objects.
Component designations, visual properties, and elementary attributes of body faces, edges, and vertexes are
imported.

XTRead method example use is given in the test converter.cpp file of the C3D Geometric Kernel test
application.

T.2.8. Exporting Models to X T and X B Formats

The function
MbeConvResType XTWrite ( IConvertorProperty3D & property,
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ItModelDocument & document,
IProgressindicator * indicator)
exports the geometric model to X T text format or X B binary format (version 10.0).
The input and output method parameters are:
* property are the converter properties,
* document is a document that passes the geometric model and other information,
* indicator is a read/write progress indicator.

If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.

General export settings are described in Item T.2.2. General Information About Boundary Representation
Converter Parameters. The converter generates either text (*.X_T) or binary (*.X_B) file depending on the
value returned by the IConvertorProperty3D::IsFileAscii method.

The exported model can have arbitrary nesting degree and it can contain MbSolid type objects.
Component designations, as well as visual properties of faces, edges, and body vertexes are exported.

XTWrite method example use is given in the test converter.cpp file of the C3D Geometric Kernel test
application.

T.2.9. Importing STEP Models

The function
MbeConvResType STEPRead ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressIndicator * indicator )
imports geometric models that have STEP format. 203 and 214 application protocols are supported.
The input and output method parameters are:
* property are the converter properties,
* document is a document that passes the geometric model and other information,
* indicator is a read/write progress indicator.

If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.

General import settings are described in Item T.2.2. General Information About Boundary Representation
Converter Parameters.

The imported model can have arbitrary nesting degree and it can contain MbSolid, MbWireFrame,
MbPointFrame, and MbSpacelnstance objects. Component properties, visual properties and elementary
attributes of body faces, edges, and vertexes, material densities, as well as dimensions and technical
specifications are imported.

STEPRead method example use is given in the test_converter.cpp file of the C3D Geometric Kernel test
application.

T.2.10. Exporting Model to STEP Format

The function
MbeConvResType STEPWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator)
exports the geometric model to STEP format. 203 and 214 application protocols are supported.
The input and output method parameters are:
*  property are the converter properties,
* document is a document that passes the geometric model and other information,
* indicator is a read/write progress indicator.
If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.
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General import settings are described in Item T.2.2. General Information About Boundary Representation
Converter Parameters. The converter generates 203 or 214 application protocol data based on the value
returned by the IConvertorProperty3D::GetFormat method. The value returned by the
IConvertorProperty3D::GetAnnotationTextRepresentation method is passed as an argument when
ItModelDetail::GetAnnotationltems, ItModelAssembly::GetAnnotationltems,
ItModelDocument:: GetAnnotationItems, and ItModellnstanceProperties::GetRequirements methods are
called.

The exported model can have arbitrary nesting degree and it can contain MbSolid, MbWireFrame,
MbPointFrame, and MbSpacelnstance type objects. Component properties, visual properties and elementary
attributes of body faces, edges, and vertexes as well as material densities are exported. Component
dimensions and their technical specifications are also exported.

STEPWrite method example use is given in the test converter.cpp file of the C3D Geometric Kernel test
application.
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T.3. POLYGONAL REPRESENTATION CONVERTERS

The C3D Geometric Kernel can read text and binary STL files and VRML files, construct an internal
model on their basis, and write the internal model using these formats. The STL and VRML text formats and
the STL binary format use polygonal representation to pass the geometric shape of the simulated object.
Triangles and polygons are used in polygonal representation to describe the geometric shape.

T.3.1. General Description of Polygonal Representation Converter Functions

The special functions described in a global scope have only one distinction from converter methods
(described in Section T.1.2): they do not accept surface stitching requester as an argument.

All functions have the same signature type: they accept both the IConvertorProperty3D converter
properties (described in Item T.1.3. IConvertorProperty3D Converter Property) and [tModelDocument model
document (described in Item T.1.4. ItModelDocument Model Document) as arguments, and also the
[ProgressIndicator progress indicator (described in Item T.1.5. IProgressindicator Progress Indicator) as an
optional parameter. The behavior of all functions is also similar: all functions receive a converter instance,
call one of its methods, and delete the converter when they finish. If successful, the functions return
cnv_Success, otherwise they return an error code from the MbeConvResType enumeration.

T.3.2. General Information About Polygonal Representation Converter
Parameters

When the converter sends data, it calls the FullFilePath, GetloPermission, GetloPermissions,
LogReport methods of the IConvertorProperty3D interface.

For export, the converter calls the ReplaceLocationsToRight, TesselationParameters, DualSeams
methods of the IConvertorProperty3D interface. Triangulation calculation parameters are used to construct a
polygonal representation of all the exported objects except MbMesh.

In standard implementation of the ConvConvertorProperty3D interface (it is described in Item T.1.3.
IConvertorProperty3D Converter Property), the fileName field should contain correct full path to the
exchange file. Default values of other fields guarantee that the methods would work correctly. For export the
file would be created or automatically rewritten if there are no limitations from the file system.

If you plan to use one of standard model document implementation, then you should make a choice based
on whether you plan to use either interface methods or a model generated using the C3D geometric kernel
objects. The RegularModelDocument implementation should be wused in the first case, and
ConvModelDocument implementation should be used in the second case.

It is permitted to pass a null pointer as a progress indicator.

T.3.3. Importing STL Models

The
MbeConvResType STLRead ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator )

function imports binary or text geometric model in the STL format.
The input and output method parameters are:
* property are the converter properties,
¢ document is the model document,
* indicator is a read/write progress indicator.
If successful, the function returns cnv_Success, otherwise it returns an error code from the
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MbeConvResType enumeration.

General import settings are described in Item T.3.2. General Information About Polygonal Representation
Converter Parameters. The imported model has one component that contains one MbMesh type object. STL
format does not support passing polygons.

STLRead method usage example is given in the test_converter.cpp file of the C3D Geometric Kernel test
application.

T.3.4. Exporting the Model to STL Format

The
MbeConvResType STLWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator )

function exports binary or text geometric model to STL format.
The input and output method parameters are:
* property are the converter properties,
¢ document is the model document,
* indicator is a read/write progress indicator.

If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.

General export settings are described in Item T.3.2. General Information About Polygonal Representation
Converter Parameters. Based on the value returned by the IConvertorProperty3D::IsFileAscii method, the
converter generates text or binary STL filee The STL converter also calls the
IConvertorProperty3D::GetOriginLocation method.

The model shape is saved during export (accurate up to conversion to polygonal representation), but both
the polygons and the information about its structure are completely lost. Reused elements are duplicated.

STLWrite method usage example is given in the test_converter.cpp file of the C3D Geometric Kernel test
application.

T.3.5. Importing VRML Model

The
MbeConvResType VRMLRead ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressindicator * indicator )
function imports VRML 2.0 geometric models.
The input and output method parameters are:
e property are the converter properties,
¢ document is the model document,
* indicator is a read/write progress indicator.
If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.
General import settings are described in Item T.3.2. General Information About Polygonal Representation
Converter Parameters.
The imported model can have any nesting degree and it can contain MbMesh objects. The visual
properties of grids are imported.
An example of VRMLRead method is given in the test converter.cpp file of the C3D Geometric Kernel
test application.
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T.3.6. Exporting a Model to VRML Format

The
MbeConvResType VRMLWrite ( IConvertorProperty3D & property,
ItModelDocument & document,
IProgressIndicator * indicator )
function exports the geometric model to the VRML 2.0 format.
The input and output method parameters are:
e property are the converter properties,
¢ document is the model document,
* indicator is a read/write progress indicator.
If successful, the function returns cnv_Success, otherwise it returns an error code from the
MbeConvResType enumeration.
General export settings are described in Item T.3.2. General Information About Polygonal Representation
Converter Parameters.
The model shape (accurate up to conversion to polygonal representation), information about its structure,
and the visual properties of grids are preserved during export.
VRMLWrite method usage example is given in the test converter.cpp file of the C3D Geometric Kernel
test application.
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